Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cell ; 155(1): 107-20, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24074864

ABSTRACT

Polycomb repressive complex 2 (PRC2) regulates gene expression during lineage specification through trimethylation of lysine 27 on histone H3 (H3K27me3). In Drosophila, polycomb binding sites are dynamic chromatin regions enriched with the histone variant H3.3. Here, we show that, in mouse embryonic stem cells (ESCs), H3.3 is required for proper establishment of H3K27me3 at the promoters of developmentally regulated genes. Upon H3.3 depletion, these promoters show reduced nucleosome turnover measured by deposition of de novo synthesized histones and reduced PRC2 occupancy. Further, we show H3.3-dependent interaction of PRC2 with the histone chaperone, Hira, and that Hira localization to chromatin requires H3.3. Our data demonstrate the importance of H3.3 in maintaining a chromatin landscape in ESCs that is important for proper gene regulation during differentiation. Moreover, our findings support the emerging notion that H3.3 has multiple functions in distinct genomic locations that are not always correlated with an "active" chromatin state.


Subject(s)
Embryonic Stem Cells/metabolism , Polycomb Repressive Complex 2/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Differentiation , Chromatin/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Embryonic Stem Cells/cytology , Histone Chaperones/metabolism , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Transcription Factors/metabolism , Up-Regulation
2.
Cell ; 151(7): 1417-30, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23260135

ABSTRACT

The high level of 5-hydroxymethylcytosine (5hmC) present in neuronal genomes suggests that mechanisms interpreting 5hmC in the CNS may differ from those present in embryonic stem cells. Here, we present quantitative, genome-wide analysis of 5hmC, 5-methylcytosine (5mC), and gene expression in differentiated CNS cell types in vivo. We report that 5hmC is enriched in active genes and that, surprisingly, strong depletion of 5mC is observed over these regions. The contribution of these epigenetic marks to gene expression depends critically on cell type. We identify methyl-CpG-binding protein 2 (MeCP2) as the major 5hmC-binding protein in the brain and demonstrate that MeCP2 binds 5hmC- and 5mC-containing DNA with similar high affinities. The Rett-syndrome-causing mutation R133C preferentially inhibits 5hmC binding. These findings support a model in which 5hmC and MeCP2 constitute a cell-specific epigenetic mechanism for regulation of chromatin structure and gene expression.


Subject(s)
Cerebellum/metabolism , Cytosine/analogs & derivatives , Epigenesis, Genetic , Methyl-CpG-Binding Protein 2/metabolism , 5-Methylcytosine/analogs & derivatives , Animals , Cerebellum/cytology , Chromatin/metabolism , Cytosine/metabolism , Humans , Mice , Mice, Knockout , Neuroglia/metabolism , Neurons/metabolism , Purkinje Cells/metabolism , Rett Syndrome/metabolism
3.
Cell ; 145(5): 692-706, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21596426

ABSTRACT

Little is known about how combinations of histone marks are interpreted at the level of nucleosomes. The second PHD finger of human BPTF is known to specifically recognize histone H3 when methylated on lysine 4 (H3K4me2/3). Here, we examine how additional heterotypic modifications influence BPTF binding. Using peptide surrogates, three acetyllysine ligands are indentified for a PHD-adjacent bromodomain in BPTF via systematic screening and biophysical characterization. Although the bromodomain displays limited discrimination among the three possible acetyllysines at the peptide level, marked selectivity is observed for only one of these sites, H4K16ac, in combination with H3K4me3 at the mononucleosome level. In support, these two histone marks constitute a unique trans-histone modification pattern that unambiguously resides within a single nucleosomal unit in human cells, and this module colocalizes with these marks in the genome. Together, our data call attention to nucleosomal patterning of covalent marks in dictating critical chromatin associations.


Subject(s)
Antigens, Nuclear/metabolism , Histones/metabolism , Nerve Tissue Proteins/metabolism , Nucleosomes/metabolism , Transcription Factors/metabolism , Acetylation , Animals , Cell Nucleus/metabolism , Chromatin/chemistry , Chromatin/metabolism , Histone Code , Histones/chemistry , Humans , Models, Molecular , Nucleosomes/chemistry , Peptides/chemistry , Peptides/metabolism , Protein Processing, Post-Translational , Protein Structure, Tertiary , Xenopus
4.
Cell ; 141(1): 129-41, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20371350

ABSTRACT

RNA transcripts are subject to posttranscriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases.


Subject(s)
Genetic Techniques , MicroRNAs/metabolism , RNA, Untranslated/genetics , RNA-Binding Proteins/metabolism , Regulatory Sequences, Ribonucleic Acid , Base Sequence , Cross-Linking Reagents/metabolism , Humans , Molecular Sequence Data , Nucleosides/metabolism , Point Mutation , Sequence Alignment
5.
Cell ; 140(5): 678-91, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20211137

ABSTRACT

The incorporation of histone H3 variants has been implicated in the epigenetic memory of cellular state. Using genome editing with zinc-finger nucleases to tag endogenous H3.3, we report genome-wide profiles of H3 variants in mammalian embryonic stem cells and neuronal precursor cells. Genome-wide patterns of H3.3 are dependent on amino acid sequence and change with cellular differentiation at developmentally regulated loci. The H3.3 chaperone Hira is required for H3.3 enrichment at active and repressed genes. Strikingly, Hira is not essential for localization of H3.3 at telomeres and many transcription factor binding sites. Immunoaffinity purification and mass spectrometry reveal that the proteins Atrx and Daxx associate with H3.3 in a Hira-independent manner. Atrx is required for Hira-independent localization of H3.3 at telomeres and for the repression of telomeric RNA. Our data demonstrate that multiple and distinct factors are responsible for H3.3 localization at specific genomic locations in mammalian cells.


Subject(s)
Histones/analysis , Telomere/chemistry , Animals , Binding Sites , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Embryonic Stem Cells/metabolism , Genome , Histone Chaperones/genetics , Histone Chaperones/metabolism , Histones/genetics , Histones/metabolism , Mice , Mice, Inbred C57BL , Telomere/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Initiation Site
6.
Mol Cell ; 59(1): 89-103, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26073541

ABSTRACT

Histone modification and DNA methylation are associated with varying epigenetic "landscapes," but detailed mechanistic and functional links between the two remain unclear. Using the ATRX-DNMT3-DNMT3L (ADD) domain of the DNA methyltransferase Dnmt3a as a paradigm, we apply protein engineering to dissect the molecular interactions underlying the recruitment of this enzyme to specific regions of chromatin in mouse embryonic stem cells (ESCs). By rendering the ADD domain insensitive to histone modification, specifically H3K4 methylation or H3T3 phosphorylation, we demonstrate the consequence of dysregulated Dnmt3a binding and activity. Targeting of a Dnmt3a mutant to H3K4me3 promoters decreases gene expression in a subset of developmental genes and alters ESC differentiation, whereas aberrant binding of another mutant to H3T3ph during mitosis promotes chromosome instability. Our studies support the general view that histone modification "reading" and DNA methylation are closely coupled in mammalian cells, and suggest an avenue for the functional assessment of chromatin-associated proteins.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Embryonic Stem Cells/cytology , Histones/genetics , Protein Engineering , Animals , Cell Differentiation , DNA Helicases/genetics , DNA Methylation , DNA Methyltransferase 3A , Mice , Mice, Inbred C57BL , Mitosis/genetics , Nuclear Proteins/genetics , Phosphorylation , Promoter Regions, Genetic , Protein Structure, Tertiary , X-linked Nuclear Protein
8.
J Clin Microbiol ; 57(11)2019 11.
Article in English | MEDLINE | ID: mdl-31484703

ABSTRACT

Molecular diagnostic tests can be used to provide rapid identification of staphylococcal species in blood culture bottles to help improve antimicrobial stewardship. However, alterations in the target nucleic acid sequences of the microorganisms or their antimicrobial resistance genes can lead to false-negative results. We determined the whole-genome sequences of 4 blood culture isolates of Staphylococcus aureus and 2 control organisms to understand the genetic basis of genotype-phenotype discrepancies when using the Xpert MRSA/SA BC test (in vitro diagnostic medical device [IVD]). Three methicillin-resistant S. aureus (MRSA) isolates each had a different insertion of a genetic element in the staphylococcal cassette chromosome (SCCmec)-orfX junction region that led to a misclassification as methicillin-susceptible S. aureus (MSSA). One strain contained a deletion in spa, which produced a false S. aureus-negative result. A control strain of S. aureus that harbored an SCCmec element but no mecA (an empty cassette) was correctly called MSSA by the Xpert test. The second control contained an SCCM1 insertion. The updated Xpert MRSA/SA BC test successfully detected both spa and SCCmec variants of MRSA and correctly identified empty-cassette strains of S. aureus as MSSA. Among a sample of 252 MSSA isolates from the United States and Europe, 3.9% contained empty SCCmec cassettes, 1.6% carried SCCM1, <1% had spa deletions, and <1% contained SCCmec variants other than those with SCCM1 These data suggest that genetic variations that may interfere with Xpert MRSA/SA BC test results remain rare. Results for all the isolates were correct when tested with the updated assay.


Subject(s)
Bacterial Proteins/genetics , Blood Culture/methods , Methicillin-Resistant Staphylococcus aureus/genetics , Molecular Diagnostic Techniques/standards , Staphylococcal Infections/blood , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , DNA, Bacterial/genetics , False Negative Reactions , Genetic Variation , Genotype , Humans , Methicillin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Diagnostic Techniques/methods , Phenotype , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Whole Genome Sequencing
9.
J Clin Microbiol ; 57(4)2019 04.
Article in English | MEDLINE | ID: mdl-30760532

ABSTRACT

Surveillance of circulating microbial populations is critical for monitoring the performance of a molecular diagnostic test. In this study, we characterized 31 isolates of Streptococcus agalactiae (group B Streptococcus [GBS]) from several geographic locations in the United States and Ireland that contain deletions in or adjacent to the region of the chromosome that encodes the hemolysin gene cfb, the region targeted by the Xpert GBS and GBS LB assays. PCR-negative, culture-positive isolates were recognized during verification studies of the Xpert GBS assay in 12 laboratories between 2012 and 2018. Whole-genome sequencing of 15 GBS isolates from 11 laboratories revealed four unique deletions of chromosomal DNA ranging from 181 bp to 49 kb. Prospective surveillance studies demonstrated that the prevalence of GBS isolates containing deletions in the convenience sample was <1% in three geographic locations but 7% in a fourth location. Among the 15 isolates with chromosomal deletions, multiple pulsed-field gel electrophoresis types were identified, one of which appears to be broadly dispersed across the United States.


Subject(s)
Genome, Bacterial/genetics , Molecular Diagnostic Techniques/standards , Sequence Deletion , Streptococcus agalactiae/genetics , Bacterial Proteins/genetics , Bacteriological Techniques , Electrophoresis, Gel, Pulsed-Field , Hemolysin Proteins/genetics , Humans , Ireland/epidemiology , Multilocus Sequence Typing , Phylogeny , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Streptococcus agalactiae/classification , United States/epidemiology
10.
Nature ; 492(7429): 382-6, 2012 Dec 20.
Article in English | MEDLINE | ID: mdl-23235829

ABSTRACT

Fragile X syndrome (FXS) is a multi-organ disease that leads to mental retardation, macro-orchidism in males and premature ovarian insufficiency in female carriers. FXS is also a prominent monogenic disease associated with autism spectrum disorders (ASDs). FXS is typically caused by the loss of fragile X mental retardation 1 (FMR1) expression, which codes for the RNA-binding protein FMRP. Here we report the discovery of distinct RNA-recognition elements that correspond to the two independent RNA-binding domains of FMRP, in addition to the binding sites within the messenger RNA targets for wild-type and I304N mutant FMRP isoforms and the FMRP paralogues FXR1P and FXR2P (also known as FXR1 and FXR2). RNA-recognition-element frequency, ratio and distribution determine target mRNA association with FMRP. Among highly enriched targets, we identify many genes involved in ASD and show that FMRP affects their protein levels in human cell culture, mouse ovaries and human brain. Notably, we discovered that these targets are also dysregulated in Fmr1(-/-) mouse ovaries showing signs of premature follicular overdevelopment. These results indicate that FMRP targets share signalling pathways across different cellular contexts. As the importance of signalling pathways in both FXS and ASD is becoming increasingly apparent, our results provide a ranked list of genes as basis for the pursuit of new therapeutic targets for these neurological disorders.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Gene Expression Regulation/genetics , Protein Biosynthesis/genetics , RNA, Messenger/genetics , Regulatory Sequences, Ribonucleic Acid/genetics , Animals , Base Sequence , Binding Sites , Brain/metabolism , Child , Child Development Disorders, Pervasive/genetics , Child Development Disorders, Pervasive/metabolism , Cross-Linking Reagents , Female , HEK293 Cells , Humans , Immunoprecipitation , Mice , Molecular Sequence Data , Multigene Family , Mutation , Ovary/metabolism , Ovary/pathology , RNA, Messenger/metabolism , Response Elements/genetics , Signal Transduction , Substrate Specificity
11.
Nature ; 483(7390): 428-33, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22419161

ABSTRACT

Viral infection is commonly associated with virus-driven hijacking of host proteins. Here we describe a novel mechanism by which influenza virus affects host cells through the interaction of influenza non-structural protein 1 (NS1) with the infected cell epigenome. We show that the NS1 protein of influenza A H3N2 subtype possesses a histone-like sequence (histone mimic) that is used by the virus to target the human PAF1 transcription elongation complex (hPAF1C). We demonstrate that binding of NS1 to hPAF1C depends on the NS1 histone mimic and results in suppression of hPAF1C-mediated transcriptional elongation. Furthermore, human PAF1 has a crucial role in the antiviral response. Loss of hPAF1C binding by NS1 attenuates influenza infection, whereas hPAF1C deficiency reduces antiviral gene expression and renders cells more susceptible to viruses. We propose that the histone mimic in NS1 enables the influenza virus to affect inducible gene expression selectively, thus contributing to suppression of the antiviral response.


Subject(s)
Gene Expression Regulation , Histones/metabolism , Influenza A Virus, H3N2 Subtype/metabolism , Influenza, Human/genetics , Influenza, Human/immunology , Molecular Mimicry , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Gene Expression Regulation/immunology , Histones/chemistry , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza, Human/pathology , Influenza, Human/virology , Molecular Sequence Data , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Protein Binding , Transcription Factors , Transcription, Genetic/immunology , Viral Nonstructural Proteins/chemistry
12.
Genes Dev ; 23(9): 1063-76, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19369410

ABSTRACT

Unusually for a eukaryote, genes transcribed by RNA polymerase II (pol II) in Trypanosoma brucei are arranged in polycistronic transcription units. With one exception, no pol II promoter motifs have been identified, and how transcription is initiated remains an enigma. T. brucei has four histone variants: H2AZ, H2BV, H3V, and H4V. Using chromatin immunoprecipitation (ChIP) and sequencing (ChIP-seq) to examine the genome-wide distribution of chromatin components, we show that histones H4K10ac, H2AZ, H2BV, and the bromodomain factor BDF3 are enriched up to 300-fold at probable pol II transcription start sites (TSSs). We also show that nucleosomes containing H2AZ and H2BV are less stable than canonical nucleosomes. Our analysis also identifies >60 unexpected TSS candidates and reveals the presence of long guanine runs at probable TSSs. Apparently unique to trypanosomes, additional histone variants H3V and H4V are enriched at probable pol II transcription termination sites. Our findings suggest that histone modifications and histone variants play crucial roles in transcription initiation and termination in trypanosomes and that destabilization of nucleosomes by histone variants is an evolutionarily ancient and general mechanism of transcription initiation, demonstrated in an organism in which general pol II transcription factors have been elusive.


Subject(s)
Genome, Protozoan/genetics , Histones/genetics , Histones/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Transcription, Genetic/genetics , Trypanosoma brucei brucei/genetics , Animals , Chromatin/chemistry , Chromatin Immunoprecipitation , DNA Polymerase II/genetics , Open Reading Frames/genetics , Promoter Regions, Genetic/genetics
13.
Nature ; 467(7317): 849-53, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20927104

ABSTRACT

Gastrointestinal stromal tumour (GIST) is the most common human sarcoma and is primarily defined by activating mutations in the KIT or PDGFRA receptor tyrosine kinases. KIT is highly expressed in interstitial cells of Cajal (ICCs)-the presumed cell of origin for GIST-as well as in haematopoietic stem cells, melanocytes, mast cells and germ cells. Yet, families harbouring germline activating KIT mutations and mice with knock-in Kit mutations almost exclusively develop ICC hyperplasia and GIST, suggesting that the cellular context is important for KIT to mediate oncogenesis. Here we show that the ETS family member ETV1 is highly expressed in the subtypes of ICCs sensitive to oncogenic KIT mediated transformation, and is required for their development. In addition, ETV1 is universally highly expressed in GISTs and is required for growth of imatinib-sensitive and resistant GIST cell lines. Transcriptome profiling and global analyses of ETV1-binding sites suggest that ETV1 is a master regulator of an ICC-GIST-specific transcription network mainly through enhancer binding. The ETV1 transcriptional program is further regulated by activated KIT, which prolongs ETV1 protein stability and cooperates with ETV1 to promote tumorigenesis. We propose that GIST arises from ICCs with high levels of endogenous ETV1 expression that, when coupled with an activating KIT mutation, drives an oncogenic ETS transcriptional program. This differs from other ETS-dependent tumours such as prostate cancer, melanoma and Ewing sarcoma where genomic translocation or amplification drives aberrant ETS expression. It also represents a novel mechanism of oncogenic transcription factor activation.


Subject(s)
Cell Lineage , Cell Transformation, Neoplastic , DNA-Binding Proteins/metabolism , Gastrointestinal Stromal Tumors/metabolism , Gastrointestinal Stromal Tumors/pathology , Oncogenes/physiology , Proto-Oncogene Proteins c-kit/metabolism , Transcription Factors/metabolism , Animals , Benzamides , Binding Sites , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Survival/drug effects , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Disease Progression , Enhancer Elements, Genetic/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Humans , Imatinib Mesylate , Interstitial Cells of Cajal/metabolism , Interstitial Cells of Cajal/pathology , Mice , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation , NIH 3T3 Cells , Oncogenes/genetics , Piperazines/pharmacology , Protein Stability , Proto-Oncogene Proteins c-kit/genetics , Pyrimidines/pharmacology , Signal Transduction , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics
14.
Nature ; 468(7327): 1119-23, 2010 Dec 23.
Article in English | MEDLINE | ID: mdl-21068722

ABSTRACT

Interaction of pathogens with cells of the immune system results in activation of inflammatory gene expression. This response, although vital for immune defence, is frequently deleterious to the host due to the exaggerated production of inflammatory proteins. The scope of inflammatory responses reflects the activation state of signalling proteins upstream of inflammatory genes as well as signal-induced assembly of nuclear chromatin complexes that support mRNA expression. Recognition of post-translationally modified histones by nuclear proteins that initiate mRNA transcription and support mRNA elongation is a critical step in the regulation of gene expression. Here we present a novel pharmacological approach that targets inflammatory gene expression by interfering with the recognition of acetylated histones by the bromodomain and extra terminal domain (BET) family of proteins. We describe a synthetic compound (I-BET) that by 'mimicking' acetylated histones disrupts chromatin complexes responsible for the expression of key inflammatory genes in activated macrophages, and confers protection against lipopolysaccharide-induced endotoxic shock and bacteria-induced sepsis. Our findings suggest that synthetic compounds specifically targeting proteins that recognize post-translationally modified histones can serve as a new generation of immunomodulatory drugs.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Gene Expression Regulation/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Inflammation , Macrophages/drug effects , Acetylation/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Benzodiazepines , Cells, Cultured , Epigenomics , Genome-Wide Association Study , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Inflammation/drug therapy , Inflammation/prevention & control , Kaplan-Meier Estimate , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Models, Molecular , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Salmonella Infections/drug therapy , Salmonella Infections/immunology , Salmonella Infections/physiopathology , Salmonella Infections/prevention & control , Salmonella typhimurium , Sepsis/drug therapy , Sepsis/prevention & control , Shock, Septic/drug therapy , Shock, Septic/prevention & control
15.
Proc Natl Acad Sci U S A ; 109(43): 17657-62, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23043114

ABSTRACT

The hippocampus is a highly plastic brain region particularly susceptible to the effects of environmental stress; it also shows dynamic changes in epigenetic marks in response to stress and learning. We have previously shown that, in the rat, acute (30 min) restraint stress induces a substantial, regionally specific, increase in hippocampal levels of the repressive histone H3 lysine 9 trimethylation (H3K9me3). Because of the large magnitude of this effect and the fact that stress can induce the expression of endogenous retroviruses and transposable elements in many systems, we hypothesized that the H3K9me3 response was targeted to these elements as a means of containing potential genomic instability. We used ChIP coupled with next generation sequencing (ChIP-Seq) to determine the genomic localization of the H3K9me3 response. Although there was a general increase in this response across the genome, our results validated this hypothesis by demonstrating that stress increases H3K9me3 enrichment at transposable element loci and, using RT-PCR, we demonstrate that this effect represses expression of intracisternal-A particle endogenous retrovirus elements and B2 short interspersed elements, but it does not appear to have a repressive effect on long interspersed element RNA. In addition, we present data showing that the histone H3K9-specific methyltransferases Suv39h2 is up-regulated by acute stress in the hippocampus, and that this may explain the hippocampal specificity we observe. These results are a unique demonstration of the regulatory effect of environmental stress, via an epigenetic mark, on the vast genomic terra incognita represented by transposable elements.


Subject(s)
Gene Silencing , Hippocampus/metabolism , Histones/metabolism , Lysine/metabolism , Retroelements , Stress, Physiological , Animals , Chromatin Immunoprecipitation , Corticosterone/administration & dosage , DNA/metabolism , Histones/chemistry , Male , Methylation , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism
16.
Front Immunol ; 14: 1146699, 2023.
Article in English | MEDLINE | ID: mdl-37275914

ABSTRACT

Introduction: Transcriptional activation depends on the interplay of chromatin modifiers to establish a permissive epigenetic landscape. While histone 3 lysine 9 (H3K9) methylation has long been associated with gene repression, there is limited evidence to support a role for H3K9 demethylases in gene activation. Methods: We leveraged knockdown and overexpression of JMJD2d / Kdm4d in mouse embryonic fibroblasts, coupled with extensive epigenomic analysesm to decipher the role of histone 3 lysine 9 demethylases in the innate immune response. Results: Here we describe the H3K9 demethylase Kdm4d/JMJD2d as a positive regulator of type I interferon responses. In mouse embryonic fibroblasts (MEFs), depletion of JMJD2d attenuates the transcriptional response, conferring increased viral susceptibility, while overexpression of the demethylase results in more robust IFN activation. We find that the underlying mechanism of JMJD2d in type I interferon responses consists of an effect both on the transcription of enhancer RNAs (eRNAs) and on dynamic H3K9me2 at associated promoters. In support of these findings, we establish that JMJD2d is associated with enhancer regions throughout the genome prior to stimulation but is redistributed to inducible promoters in conjunction with transcriptional activation. Discussion: Taken together, our data reveal JMJD2d as a chromatin modifier that connects enhancer transcription with promoter demethylation to modulate transcriptional responses.


Subject(s)
Histone Demethylases , Interferon Type I , Animals , Mice , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Interferon Type I/genetics , Lysine/genetics , Fibroblasts/metabolism , Chromatin/genetics
17.
J Am Chem Soc ; 134(6): 2981-7, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22224500

ABSTRACT

In a recent study of polyketide biosynthetic gene clusters cloned directly from soil, we isolated two antibiotics, fasamycins A and B, which showed activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. To identify the target of the fasamycins, mutants with elevated fasamycin A minimum inhibitory concentrations were selected from a wild-type culture of E. faecalis OG1RF. Next-generation sequencing of these mutants, in conjunction with in vitro biochemical assays, showed that the fasamycins inhibit FabF of type II fatty acid biosynthesis (FASII). Candidate gene overexpression studies also showed that fasamycin resistance is conferred by fabF overexpression. On the basis of comparisons with known FASII inhibitors and in silico docking studies, the chloro-gem-dimethyl-anthracenone substructure seen in the fasamycins is predicted to represent a naturally occurring FabF-specific antibiotic pharmacophore. Optimization of this pharmacophore should yield FabF-specific antibiotics with increased potencies and differing spectra of activity. This study demonstrates that culture-independent antibiotic discovery methods have the potential to provide access to novel metabolites with modes of action that differ from those of antibiotics currently in clinical use.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/drug effects , Anti-Bacterial Agents/chemistry , Bacterial Proteins/drug effects , Biphenyl Compounds/chemical synthesis , Chemistry, Pharmaceutical/methods , DNA/chemistry , Enterococcus faecalis/metabolism , Fatty Acids/metabolism , Polycyclic Aromatic Hydrocarbons/chemical synthesis , Base Sequence , Biochemistry/methods , Chromatography/methods , Cloning, Molecular , DNA Primers/genetics , Gene Library , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Sequence Data , Multigene Family , Mutation
18.
Nucleic Acids Res ; 38(15): 4946-57, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20385579

ABSTRACT

Transcription of protein-coding genes in trypanosomes is polycistronic and gene expression is primarily regulated by post-transcriptional mechanisms. Sequence motifs in the untranslated regions regulate mRNA trans-splicing and RNA stability, yet where UTRs begin and end is known for very few genes. We used high-throughput RNA-sequencing to determine the genome-wide steady-state mRNA levels ('transcriptomes') for approximately 90% of the genome in two stages of the Trypanosoma brucei life cycle cultured in vitro. Almost 6% of genes were differentially expressed between the two life-cycle stages. We identified 5' splice-acceptor sites (SAS) and polyadenylation sites (PAS) for 6959 and 5948 genes, respectively. Most genes have between one and three alternative SAS, but PAS are more dispersed. For 488 genes, SAS were identified downstream of the originally assigned initiator ATG, so a subsequent in-frame ATG presumably designates the start of the true coding sequence. In some cases, alternative SAS would give rise to mRNAs encoding proteins with different N-terminal sequences. We could identify the introns in two genes known to contain them, but found no additional genes with introns. Our study demonstrates the usefulness of the RNA-seq technology to study the transcriptional landscape of an organism whose genome has not been fully annotated.


Subject(s)
Genome, Protozoan , Polyadenylation , RNA, Messenger/metabolism , Trans-Splicing , Trypanosoma brucei brucei/genetics , Animals , Cell Line , Gene Expression Profiling , Genes, Protozoan , Genomics , Introns , Life Cycle Stages/genetics , RNA Splice Sites , RNA, Messenger/chemistry , Sequence Analysis, RNA , Trypanosoma brucei brucei/growth & development , Untranslated Regions
19.
Nature ; 437(7057): 376-80, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16056220

ABSTRACT

The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.


Subject(s)
Genome, Bacterial , Genomics/instrumentation , Microchemistry/instrumentation , Mycoplasma genitalium/genetics , Sequence Analysis, DNA/instrumentation , Electrophoresis, Capillary , Emulsions , Fiber Optic Technology , Genomics/economics , Microchemistry/economics , Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity , Sequence Analysis, DNA/economics , Time Factors
20.
Diagn Microbiol Infect Dis ; 101(1): 115422, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34111650

ABSTRACT

This study characterized the mechanisms of carbapenem resistance in gram-negative bacteria isolated from patients in Yola, Nigeria. Whole genome sequencing (WGS) was performed on 66 isolates previously identified phenotypically as carbapenem-non-susceptible. The patterns of beta-lactamase resistance genes identified were primarily species-specific. However, blaNDM-7 and blaCMY-4 were detected in all Escherichia coli and most Providencia rettgeri isolates; blaNDM-7 was also detected in 1 Enterobacter cloacae. The E. coli and E. cloacae isolates also shared blaOXA-1, while blaOXA-10 was found in all P. rettgeri, one Pseudomonas aeruginosa and 1 E. coli. Except for Stenotrophomonas maltophilia isolates, which only contained blaL1, most species carried multiple beta-lactamase genes, including those encoding extended-spectrum beta-lactamases, AmpC and OXA in addition to a carbapenemase gene. Carbapenemase genes were either class B or class D beta-lactamases. No carbapenemase gene was detected by WGS in 13.6% of isolates.


Subject(s)
Carbapenems/pharmacology , Genome, Bacterial/genetics , Gram-Negative Bacteria/genetics , beta-Lactam Resistance/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/microbiology , Humans , Microbial Sensitivity Tests , Nigeria , beta-Lactam Resistance/drug effects , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL