Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Nature ; 623(7988): 745-751, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37788684

ABSTRACT

Modern retrosynthetic analysis in organic chemistry is based on the principle of polar relationships between functional groups to guide the design of synthetic routes1. This method, termed polar retrosynthetic analysis, assigns partial positive (electrophilic) or negative (nucleophilic) charges to constituent functional groups in complex molecules followed by disconnecting bonds between opposing charges2-4. Although this approach forms the basis of undergraduate curriculum in organic chemistry5 and strategic applications of most synthetic methods6, the implementation often requires a long list of ancillary considerations to mitigate chemoselectivity and oxidation state issues involving protecting groups and precise reaction choreography3,4,7. Here we report a radical-based Ni/Ag-electrocatalytic cross-coupling of substituted carboxylic acids, thereby enabling an intuitive and modular approach to accessing complex molecular architectures. This new method relies on a key silver additive that forms an active Ag nanoparticle-coated electrode surface8,9 in situ along with carefully chosen ligands that modulate the reactivity of Ni. Through judicious choice of conditions and ligands, the cross-couplings can be rendered highly diastereoselective. To demonstrate the simplifying power of these reactions, concise syntheses of 14 natural products and two medicinally relevant molecules were completed.


Subject(s)
Biological Products , Chemistry Techniques, Synthetic , Decarboxylation , Electrochemistry , Electrodes , Pharmaceutical Preparations , Carboxylic Acids/chemistry , Metal Nanoparticles/chemistry , Oxidation-Reduction , Silver/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Nickel/chemistry , Ligands , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry , Electrochemistry/methods , Chemistry Techniques, Synthetic/methods
2.
J Am Chem Soc ; 144(38): 17709-17720, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36106767

ABSTRACT

A useful protocol for achieving decarboxylative cross-coupling (DCC) of redox-active esters (RAE, isolated or generated in situ) and halo(hetero)arenes is reported. This pragmatically focused study employs a unique Ag-Ni electrocatalytic platform to overcome numerous limitations that have plagued this strategically powerful transformation. In its optimized form, coupling partners can be combined in a surprisingly simple way: open to the air, using technical-grade solvents, an inexpensive ligand and Ni source, and substoichiometric AgNO3, proceeding at room temperature with a simple commercial potentiostat. Most importantly, all of the results are placed into context by benchmarking with state-of-the-art methods. Applications are presented that simplify synthesis and rapidly enable access to challenging chemical space. Finally, adaptation to multiple scale regimes, ranging from parallel milligram-based synthesis to decagram recirculating flow is presented.


Subject(s)
Esters , Catalysis , Ligands , Oxidation-Reduction , Solvents
3.
J Org Chem ; 86(2): 1730-1747, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33356273

ABSTRACT

Indole and indoline rings are important pharmacophoric scaffolds found in marketed drugs, agrochemicals, and biologically active molecules. The [2 + 2] cycloaddition reaction is a versatile strategy for constructing architecturally interesting, sp3-rich cyclobutane-fused scaffolds with potential applications in drug discovery programs. A general platform for visible-light mediated intermolecular [2 + 2] cycloaddition of indoles with alkenes has been realized. A substrate-based screening approach led to the discovery of tert-butyloxycarbonyl (Boc)-protected indole-2-carboxyesters as suitable motifs for the intermolecular [2 + 2] cycloaddition reaction. Significantly, the reaction proceeds in good yield with a wide variety of both activated and unactivated alkenes, including those containing free amines and alcohols, and the transformation exhibits excellent regio- and diastereoselectivity. Moreover, the scope of the indole substrate is very broad, extending to previously unexplored azaindole heterocycles that collectively afford fused cyclobutane containing scaffolds that offer unique properties with functional handles and vectors suitable for further derivatization. DFT computational studies provide insights into the mechanism of this [2 + 2] cycloaddition, which is initiated by a triplet-triplet energy transfer process. The photocatalytic reaction was successfully performed on a 100 g scale to provide the dihydroindole analog.

4.
J Immunol ; 202(1): 79-92, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30478092

ABSTRACT

The role of retinoid-related orphan receptor γ t (RORγt) in Th17 cell differentiation has been well established; however, how it regulates other T cell lineages is still not clearly understood. In this study, we report that in mice, while promoting Th17 cell differentiation, RORγt inhibited IL-10 production by T cells, thereby preserving the pathogenicity of Th17 cells. Treatment with RORγt-specific inhibitor suppressed Th17 cell signature cytokines, but promoted IL-10 production. RORγt inhibitor-treated Th17 cells induce less severe colitis compared with control Th17 cells. Mechanistically, the RORγt inhibitor induced T cell expression of Blimp-1 (encoded by Prdm1). Prdm1-/- T cells produced significantly fewer IL-10 when treated with RORγt inhibitor compared with wild-type T cells. Furthermore, RORγt inhibitor-treated Prdm1-/- Th17 cells induce more severe colitis compared with RORγt inhibitor-treated wild-type Th17 cells. Collectively, our studies reveal a novel mechanism by which RORγt drives and maintains pathogenic Th17 cell development by inhibiting IL-10 production.


Subject(s)
Colitis/immunology , Interleukin-10/metabolism , Intestines/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Th17 Cells/immunology , Animals , Cell Differentiation , Cell Lineage , Cells, Cultured , Epigenetic Repression , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Positive Regulatory Domain I-Binding Factor 1/genetics
5.
J Am Chem Soc ; 142(6): 3094-3103, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31927959

ABSTRACT

We describe the synthesis through visible-light photocatalysis of novel functionalized tetracyclic scaffolds that incorporate a fused azabicyclo[3.2.0]heptan-2-one motif, which are structurally interesting cores with potential in natural product synthesis and drug discovery. The synthetic approach involves an intramolecular [2 + 2] cycloaddition with concomitant dearomatization of the heterocycle via an energy transfer process promoted by an iridium-based photosensitizer, to build a complex molecular architecture with at least three stereogenic centers from relatively simple, achiral precursors. These fused azabicyclo[3.2.0]heptan-2-one-based tetracycles were obtained in high yield (generally >99%) and with excellent diastereoselectivity (>99:1). The late-stage derivatization of a bromine-substituted, tetracyclic indoline derivative with alkyl groups, employing a mild Negishi C-C bond forming protocol as a means of increasing structural diversity, provides additional modularity that will enable the delivery of valuable building blocks for medicinal chemistry. Density functional theory calculations were used to compute the T1-S0 free energy gap of the olefin-tethered precursors and also to predict their reactivities based on triplet state energy transfer and transition state energy feasibility.

6.
Bioorg Med Chem Lett ; 30(19): 127466, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32763309

ABSTRACT

RORγt is the master regulator of the IL-23/IL-17 axis, a pathway that is clinically validated for the treatment of various immunological disorders. Over the last few years, our group has reported different chemotypes that potently act as inverse agonists of RORγt. One of them, the tricyclic pyrrolidine chemotype, has demonstrated biologic-like preclinical efficacy and has led to our clinical candidate BMS-986251. In this letter, we discuss the invention of an annulation reaction which enabled the synthesis of a tricyclic exocyclic amide chemotype and the identification of compounds with RORγt inverse agonist activity. Preliminary structure activity relationships are disclosed.


Subject(s)
Amides/chemistry , Hydrocarbons, Cyclic/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Sulfones/chemistry , Amides/chemical synthesis , Amides/metabolism , Animals , Cyclization , Drug Inverse Agonism , Humans , Hydrocarbons, Cyclic/chemical synthesis , Hydrocarbons, Cyclic/metabolism , Mice , Microsomes, Liver/metabolism , Molecular Docking Simulation , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/metabolism
7.
Bioorg Med Chem Lett ; 30(17): 127392, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32738966

ABSTRACT

A novel series of cis-3,4-diphenylpyrrolidines were designed as RORγt inverse agonists based on the binding conformation of previously reported bicyclic sulfonamide 1. Preliminary synthesis and structure-activity relationship (SAR) study established (3S,4S)-3-methyl-3-(4-fluorophenyl)-4-(4-(1,1,1,3,3,3-hexafluoro-2-hydroxyprop-2-yl)phenyl)pyrrolidine as the most effective scaffold. Subsequent SAR optimization led to identification of a piperidinyl carboxamide 31, which was potent against RORγt (EC50 of 61 nM in an inverse agonist assay), selective relative to RORα, RORß, LXRα and LXRß, and stable in human and mouse liver microsomes. Furthermore, compound 31 exhibited considerably lower PXR Ymax (46%) and emerged as a promising lead. The binding mode of the diphenylpyrrolidine series was established with an X-ray co-crystal structure of 10A/RORγt.


Subject(s)
Drug Design , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Pyrrolidines/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Drug Inverse Agonism , Humans , Mice , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Pregnane X Receptor/agonists , Pregnane X Receptor/metabolism , Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 30(23): 127521, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32882417

ABSTRACT

In order to rapidly develop C6 and C8 SAR of our reported tricyclic sulfone series of RORγt inverse agonists, a late-stage bromination was employed. Although not regioselective, the bromination protocol allowed us to explore new substitution patterns/vectors that otherwise would have to be incorporated at the very beginning of the synthesis. Based on the SAR obtained from this exercise, compound 15 bearing a C8 fluorine was developed as a very potent and selective RORγt inverse agonist. This analog's in vitro profile, pharmacokinetic (PK) data and efficacy in an IL-23 induced mouse acanthosis model will be discussed.


Subject(s)
Heterocyclic Compounds, 3-Ring/therapeutic use , Melanosis/drug therapy , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Sulfones/therapeutic use , Animals , Crystallography, X-Ray , Drug Inverse Agonism , Female , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Interleukin-18 , Male , Melanosis/chemically induced , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Protein Binding , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/pharmacokinetics
9.
J Org Chem ; 84(13): 8360-8379, 2019 07 05.
Article in English | MEDLINE | ID: mdl-30905152

ABSTRACT

An intramolecular arene alkylation reaction has been developed using the organic photocatalyst 4CzIPN, visible light, and N-(acyloxy)phthalimides as radical precursors. Reaction conditions were optimized via high-throughput experimentation, and electron-rich and electron-deficient arenes and heteroarenes are viable reaction substrates. This reaction enables access to a diverse set of fused, partially saturated cores which are of high interest in synthetic and medicinal chemistry.

10.
J Org Chem ; 83(5): 3000-3012, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29420898

ABSTRACT

An improved, one-pot Minisci reaction has been developed using visible light, an organic photocatalyst, and carboxylic acids as radical precursors via the intermediacy of in situ-generated N-(acyloxy)phthalimides. The conditions employed are mild, demonstrate a high degree of functional group tolerance, and do not require a large excess of the carboxylic acid reactant. As a result, this reaction can be applied to drug-like scaffolds and molecules with sensitive functional groups, enabling late-stage functionalization, which is of high interest to medicinal chemistry.

11.
Bioorg Med Chem Lett ; 28(2): 85-93, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29233651

ABSTRACT

We disclose the optimization of a high throughput screening hit to yield benzothiazine and tetrahydroquinoline sulfonamides as potent RORγt inverse agonists. However, a majority of these compounds showed potent activity against pregnane X receptor (PXR) and modest activity against liver X receptor α (LXRα). Structure-based drug design (SBDD) led to the identification of benzothiazine and tetrahydroquinoline sulfonamide analogs which completely dialed out LXRα activity and were less potent at PXR. Pharmacodynamic (PD) data for compound 35 in an IL-23 induced IL-17 mouse model is discussed along with the implications of a high Ymax in the PXR assay for long term preclinical pharmacokinetic (PK) studies.


Subject(s)
Bridged Bicyclo Compounds/pharmacology , Drug Design , Propanols/pharmacology , Receptors, Retinoic Acid/agonists , Receptors, Steroid/agonists , Sulfonamides/pharmacology , Animals , Bridged Bicyclo Compounds/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Liver X Receptors/agonists , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Structure , Pregnane X Receptor , Propanols/chemical synthesis , Propanols/chemistry , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Retinoic Acid Receptor gamma
13.
Bioorg Med Chem Lett ; 27(4): 855-861, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28108251

ABSTRACT

As demonstrated in preclinical animal models, the disruption of PI3Kδ expression or its activity leads to a decrease in inflammatory and immune responses. Therefore, inhibition of PI3Kδ may provide an alternative treatment for autoimmune diseases, such as RA, SLE, and respiratory ailments. Herein, we disclose the identification of 7-(3-(piperazin-1-yl)phenyl)pyrrolo[2,1-f][1,2,4]triazin-4-amine derivatives as highly potent, selective and orally bioavailable PI3Kδ inhibitors. The lead compound demonstrated efficacy in an in vivo mouse KLH model.


Subject(s)
Amines/chemistry , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Amines/metabolism , Amines/therapeutic use , Animals , Autoimmune Diseases/drug therapy , Binding Sites , Class I Phosphatidylinositol 3-Kinases , Crystallography, X-Ray , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Mice , Microsomes, Liver/metabolism , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Piperazine , Piperazines/chemistry , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Structure-Activity Relationship , Triazines/chemistry
14.
Bioorg Med Chem Lett ; 26(17): 4256-60, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27476421

ABSTRACT

Aberrant Class I PI3K signaling is a key factor contributing to many immunological disorders and cancers. We have identified 4-amino pyrrolotriazine as a novel chemotype that selectively inhibits PI3Kδ signaling despite not binding to the specificity pocket of PI3Kδ isoform. Structure activity relationship (SAR) led to the identification of compound 30 that demonstrated efficacy in mouse Keyhole Limpet Hemocyanin (KLH) and collagen induced arthritis (CIA) models.


Subject(s)
Amines/chemistry , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Triazines/chemistry , Amines/metabolism , Amines/therapeutic use , Animals , Arthritis/drug therapy , Arthritis/metabolism , Arthritis/pathology , Binding Sites , Disease Models, Animal , Drug Evaluation, Preclinical , Inhibitory Concentration 50 , Mice , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/therapeutic use , Protein Structure, Tertiary , Structure-Activity Relationship
15.
Angew Chem Int Ed Engl ; 55(2): 785-9, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26611496

ABSTRACT

A quinoline-based ligand effectively promotes the palladium-catalyzed borylation of C(sp(3))-H bonds. Primary ß-C(sp(3))-H bonds in carboxylic acid derivatives as well as secondary C(sp(3))-H bonds in a variety of carbocyclic rings, including cyclopropanes, cyclobutanes, cyclopentanes, cyclohexanes, and cycloheptanes, can thus be borylated. This directed borylation method complements existing iridium(I)- and rhodium(I)-catalyzed C-H borylation reactions in terms of scope and operational conditions.


Subject(s)
Boron Compounds/chemistry , Palladium/chemistry , Catalysis , Hydrogen Bonding , Ligands
16.
J Med Chem ; 67(3): 1701-1733, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38290426

ABSTRACT

The drug discovery landscape has undergone a significant transformation over the past decade, owing to research endeavors in a wide range of areas leading to strategies for pursuing new drug targets and the emergence of novel drug modalities. NMR spectroscopy has been a technology of fundamental importance to these research pursuits and has seen its use expanded both within and outside of traditional medicinal chemistry applications. In this perspective, we will present advancement of NMR-derived methods that have facilitated the characterization of small molecules and novel drug modalities including macrocyclic peptides, cyclic dinucleotides, and ligands for protein degradation. We will discuss innovations in NMR spectroscopy at the chemistry and biology interface that have broadened NMR's utility from hit identification through lead optimization activities. We will also discuss the promise of emerging NMR approaches in bridging our understanding and addressing challenges in the pursuit of the therapeutic agents of the future.


Subject(s)
Drug Discovery , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Drug Discovery/methods , Protein Binding , Chemistry, Pharmaceutical , Ligands , Nuclear Magnetic Resonance, Biomolecular/methods
17.
Bioorg Med Chem Lett ; 23(20): 5571-4, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24011644

ABSTRACT

A series of heterocyclic glucocorticoid receptor (GR) modulators with 2,2-dimethyl-3-phenyl-N-(thiazol or thiadiazol-2-yl)propanamide core are described. Structure-activity relationships suggest a combination of H-bond acceptor and a 4-fluorophenyl moiety as being important structural components contributing to the glucocorticoid receptor binding and functional activity for this series of GR modulators.


Subject(s)
Amides/chemistry , Heterocyclic Compounds/chemistry , Receptors, Glucocorticoid/agonists , Thiadiazoles/chemistry , Thiazoles/chemistry , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/metabolism , Protein Binding , Receptors, Glucocorticoid/metabolism , Stereoisomerism , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 23(19): 5448-51, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23916594

ABSTRACT

SAR was used to further develop an indazole class of non-steroidal glucocorticoid receptor agonists aided by a GR LBD (ligand-binding domain)-agonist co-crystal structure described in the accompanying paper. Progress towards discovering a dissociated GR agonist guided by human in vitro assays biased the optimization of this compound series towards partial agonists that possessed excellent selectivity against other nuclear hormone receptors.


Subject(s)
Indazoles/chemical synthesis , Indazoles/pharmacology , Receptors, Glucocorticoid/agonists , Amides/chemistry , Amides/pharmacology , Humans , Indazoles/chemistry , Models, Molecular , Protein Binding/drug effects , Receptors, Glucocorticoid/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology , Urea/chemistry , Urea/pharmacology
19.
Bioorg Med Chem Lett ; 23(19): 5442-7, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23953070

ABSTRACT

Modification of a phenolic lead structure based on lessons learned from increasing the potency of steroidal glucocorticoid agonists lead to the discovery of exceptionally potent, nonsteroidal, indazole GR agonists. SAR was developed to achieve good selectivity against other nuclear hormone receptors with the ultimate goal of achieving a dissociated GR agonist as measured by human in vitro assays. The specific interactions by which this class of compounds inhibits GR was elucidated by solving an X-ray co-crystal structure.


Subject(s)
Amides/chemistry , Amides/pharmacology , Drug Discovery , Receptors, Glucocorticoid/agonists , Binding Sites , Crystallography, X-Ray , Humans , Indazoles/chemistry , Indazoles/pharmacology , Molecular Structure , Protein Binding/drug effects , Steroids/chemistry , Steroids/pharmacology , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 23(14): 4120-6, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23746475

ABSTRACT

A novel series of p38 MAP kinase inhibitors with high selectivity for the p38α isoform over the other family members including the highly homologous p38ß isoform has been identified. X-ray co-crystallographic studies have revealed an unprecedented kinase binding mode in p38α for representative analogs, 5c and 9d, in which a Leu108/Met109 peptide flip occurs within the p38α hinge region. Based on these findings, a general strategy for the rational design of additional promising p38α isoform selective inhibitors by targeting this novel binding mode is proposed.


Subject(s)
Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Hydrogen Bonding , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Dynamics Simulation , Protein Binding , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL