Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Publication year range
1.
Cell Immunol ; 399-400: 104811, 2024.
Article in English | MEDLINE | ID: mdl-38518686

ABSTRACT

Helicobacter pylori-associated stomach infection is a leading cause of gastric ulcer and related cancer. H. pylori modulates the functions of infiltrated immune cells to survive the killing by reactive oxygen and nitrogen species (ROS and RNS) produced by these cells. Uncontrolled immune responses further produce excess ROS and RNS which lead to mucosal damage. The persistent oxidative stress is a major cause of gastric cancer. H. pylori regulates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs), nitric oxide synthase 2 (NOS2), and polyamines to control ROS and RNS release through lesser-known mechanisms. ROS and RNS produced by these pathways differentiate macrophages and T cells from protective to inflammatory phenotype. Pathogens-associated molecular patterns (PAMPs) induced ROS activates nuclear oligomerization domain (NOD), leucine rich repeats (LRR) and pyrin domain-containing protein 3 (NLRP3) inflammasome for the release of pro-inflammatory cytokines. This study evaluates the role of H. pylori secreted concentrated proteins (HPSCP) related oxidative stress role in NLRP3 inflammasome activation and macrophage differentiation. To perceive the role of ROS/RNS, THP-1 and AGS cells were treated with 10 µM diphenyleneiodonium (DPI), 50 µM salicyl hydroxamic acid (SHX), 5 µM Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP), which are specific inhibitors of NADPH oxidase (NOX), Myeloperoxidase (MPO), and mitochondrial oxidative phosphorylation respectively. Cells were also treated with 10 µM of NOS2 inhibitor l-NMMA and 10 µM of N-acetyl cysteine (NAC), a free radical scavenger·H2O2 (100 µM) treated and untreated cells were used as positive controls and negative control respectively. The expression of gp91phox (NOX2), NOS2, NLRP3, CD86 and CD163 was analyzed through fluorescent microscopy. THP-1 macrophages growth was unaffected whereas the gastric epithelial AGS cells proliferated in response to higher concentration of HPSCP. ROS and myeloperoxidase (MPO) level increased in THP-1 cells and nitric oxide (NO) and lipid peroxidation significantly decreased in AGS cells. gp91phox expression was unchanged, whereas NOS2 and NLRP3 downregulated in response to HPSCP, but increased after inhibition of NO, ROS and MPO in THP-1 cells. HPSCP upregulated the expression of M1 and M2 macrophage markers, CD86 and CD163 respectively, which was decreased after the inhibition of ROS. This study concludes that there are multiple pathways which are generating ROS during H. pylori infection which further regulates other cellular processes. NO is closely associated with MPO and inhibition of NLRP3 inflammasome. The low levels of NO and MPO regulates gastrointestinal tract homeostasis and overcomes the inflammatory response of NLRP3. The ROS also plays crucial role in macrophage polarization hence alter the immune responses duing H. pylori pathogenesis.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Reactive Oxygen Species , Humans , Helicobacter pylori/immunology , Reactive Oxygen Species/metabolism , Helicobacter Infections/immunology , Helicobacter Infections/metabolism , Inflammasomes/metabolism , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Macrophages/metabolism , Macrophages/immunology , Bacterial Proteins/metabolism , Reactive Nitrogen Species/metabolism , THP-1 Cells , NADPH Oxidases/metabolism , Nitric Oxide Synthase Type II/metabolism , Cell Differentiation/immunology
2.
J Biochem Mol Toxicol ; 38(3): e23660, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38356323

ABSTRACT

The most widespread neurodegenerative disorder, Alzheimer's disease (AD) is marked by severe behavioral abnormalities, cognitive and functional impairments. It is inextricably linked with the deposition of amyloid ß (Aß) plaques and tau protein in the brain. Loss of white matter, neurons, synapses, and reactive microgliosis are also frequently observed in patients of AD. Although the causative mechanisms behind the neuropathological alterations in AD are not fully understood, they are likely influenced by hereditary and environmental factors. The etiology and pathogenesis of AD are significantly influenced by the cells of the central nervous system, namely, glial cells and neurons, which are directly engaged in the transmission of electrical signals and the processing of information. Emerging evidence suggests that exposure to organophosphate pesticides (OPPs) can trigger inflammatory responses in glial cells, leading to various cascades of events that contribute to neuroinflammation, neuronal damage, and ultimately, AD pathogenesis. Furthermore, there are striking similarities between the biomarkers associated with AD and OPPs, including neuroinflammation, oxidative stress, dysregulation of microRNA, and accumulation of toxic protein aggregates, such as amyloid ß. These shared markers suggest a potential mechanistic link between OPP exposure and AD pathology. In this review, we attempt to address the role of OPPs on altered cell physiology of the brain cells leading to neuroinflammation, mitochondrial dysfunction, and oxidative stress linked with AD pathogenesis.


Subject(s)
Alzheimer Disease , Pesticides , Humans , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neuroinflammatory Diseases , Brain/metabolism , Organophosphates/metabolism , Pesticides/toxicity , Pesticides/metabolism
3.
Bioorg Chem ; 147: 107341, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593531

ABSTRACT

A series of new indole-oxadiazole derivatives was designed and synthesized to develop potential anti-breast cancer agents. The compounds exhibited significant inhibitory activity with IC50 values ranging from 1.78 to 19.74 µM against ER-positive human breast cancer (BC) cell lines T-47D and MCF-7. Among them, compounds (5a, 5c, 5e-5h, 5j-5o) displayed superior activity against ER-α dominant (ratio of ER-α/ER-ß is 9/1) T-47D cells compared to the standard drug bazedoxifene (IC50 = 12.78 ± 0.92 µM). Compounds 5c and 5o exhibited remarkable anti-proliferative activity with IC50 values of 3.24 ± 0.46 and 1.72 ± 1.67 µM against T-47D cells, respectively. Further, compound 5o manifested 1589-fold higher ER-α binding affinity (213.4 pM) relative to bazedoxifene (339.2 nM) in a competitive ER-α binding assay, while compound 5c showed a binding affinity of 446.6 nM. The Western blot analysis proved that both compounds influenced the ER-α protein's expression, impeding its subsequent transactivation and signalling pathway within T-47D cells. Additionally, a molecular docking study suggests that compounds 5c and 5o bind in such a fashion that induces conformational changes in the protein, culminating in their antagonistic effect. Also, pharmacokinetic profiles showed that all compounds have drug-like properties. Further, molecular dynamic (MD) simulations and density functional theory (DFT) analysis confirmed the stability, conformational behaviour, reactivity, and biological feasibility of compounds 5c and 5o. In conclusion, based on our findings, compounds 5c and 5o, which exhibit significant ER-α antagonistic activity, can act as potential lead compounds for developing anti-breast cancer agents.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Estrogen Receptor alpha , Indoles , Oxadiazoles , Humans , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/antagonists & inhibitors , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Oxadiazoles/chemical synthesis , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Molecular Structure , Molecular Docking Simulation , Cell Line, Tumor
4.
Metab Brain Dis ; 39(1): 217-237, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37505443

ABSTRACT

Small non-coding RNAs (miRNAs) regulate gene expression by binding to mRNA and mediating its degradation or inhibiting translation. Since miRNAs can regulate the expression of several genes, they have multiple roles to play in biological processes and human diseases. The majority of miRNAs are known to be expressed in the brain and are involved in synaptic functions, thus marking their presence and role in major neurodegenerative disorders, including Alzheimer's disease (AD). In AD, amyloid beta (Aß) plaques and neurofibrillary tangles (NFTs) are known to be the major hallmarks. The clearance of Aß and tau is known to be associated with miRNA dysregulation. In addition, the ß-site APP cleaving enzyme (BACE 1), which cleaves APP to form Aß, is also found to be regulated by miRNAs, thus directly affecting Aß accumulation. Growing evidences suggest that neuroinflammation can be an initial event in AD pathology, and miRNAs have been linked with the regulation of neuroinflammation. Inflammatory disorders have also been associated with AD pathology, and exosomes associated with miRNAs are known to regulate brain inflammation, suggesting for the role of systemic miRNAs in AD pathology. Several miRNAs have been related in AD, years before the clinical symptoms appear, most of which are associated with regulating the cell cycle, immune system, stress responses, cellular senescence, nerve growth factor (NGF) signaling, and synaptic regulation. Phytochemicals, especially polyphenols, alter the expression of various miRNAs by binding to miRNAs or binding to the transcriptional activators of miRNAs, thus control/alter various metabolic pathways. Awing to the sundry biological processes being regulated by miRNAs in the brain and regulation of expression of miRNAs via phytochemicals, miRNAs and the regulatory bioactive phytochemicals can serve as therapeutic agents in the treatment and management of AD.


Subject(s)
Alzheimer Disease , MicroRNAs , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroinflammatory Diseases , Brain/metabolism
5.
J Biochem Mol Toxicol ; 36(8): e23096, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35532218

ABSTRACT

The present study examined the wheat protein gliadin-induced oxidative and nitrosative stress and its downstream responses in human intestinal HCT-116 and HT-29 cells. The beneficial role of dietary phytochemical curcumin and role of multifunctional enzyme Apurinic/aprymidinic endonuclease 1 (APE1) a major player involved in the base excision repair (BER)-pathway in gliadin intolerant intestinal HCT-116 and HT-29 cell lines were evaluated as an in vitro model study. The cultured cells were exposed to gliadin protein, H2 O2 , and curcumin followed by the assessment of oxidative stress and the consequences were measured using spectrophotometric, PCR, flow cytometer, Western blotting, confocal microscopy, and other methods. Results demonstrate that a 3 h pretreatment of curcumin, followed by the treatment of gliadin protein for 24 h time period protected both the HCT-116 and HT-29 cells via: (i) decreasing the ROS/RNS, restoring the mitochondrial transmembrane potential; (ii) re-establishing the cellular antioxidant defense system (superoxide dismutase, catalase, and GSH); (iii) enhancing the functions of APE1 viz. endonuclease activity and redox activation of transcription factor Nrf-2, the later binds with the antioxidant response elements (ARE) and activates downstream targets involved in cell survival. The cross-talk between APE1 and Nrf-2 was also established using immunofluorescence imaging and co-immunoprecipitation assays. In conclusion, gliadin protein induces oxidative/nitrosative stress, mitochondrial dysfunction and it damages cellular biomolecules in the intestinal cells. Hence it can be attributed to the tissue damage and disease pathogenesis in wheat intolerance-associated intestinal diseases. The gliadin-induced stress and its consequences are significantly reduced by the pretreatment of curcumin via BER-pathway and ARE-pathway; which is evident through the interaction between these two essential proteins. Hence suggesting for the intervention of curcumin and other natural dietary phytochemicals-based disease management and treatment of gliadin intolerance associated intestinal diseases like celiac disease.


Subject(s)
Curcumin , DNA-(Apurinic or Apyrimidinic Site) Lyase , Gliadin , NF-E2-Related Factor 2 , Oxidative Stress , Curcumin/pharmacology , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Endonucleases/metabolism , Gliadin/adverse effects , Humans , Multifunctional Enzymes/metabolism , NF-E2-Related Factor 2/metabolism , Transcription Factors/metabolism
6.
J Cell Biochem ; 122(2): 153-165, 2021 02.
Article in English | MEDLINE | ID: mdl-32924182

ABSTRACT

Doxorubicin (DOX) is a boon for cancer-suffering patients. However, the undesirable effect on health on vital organs, especially the heart, is a limiting factor, resulting in an increased number of patients with cardiac dysfunction. The present review focuses on the contractile machinery and associated factors, which get affected due to DOX toxicity in chemo-patients for which they are kept under life-long investigation for cardiac function. DOX-induced oxidative stress disrupts the integrity of cardiac contractile muscle proteins that alter the rhythmic mechanism and oxygen consumption rate of the heart. DOX is an oxidant and it is further discussed that oxidative stress prompts the damage of contractile components and associated factors, which include Ca2+ load through Ca2+ ATPase, SERCA, ryanodine receptor-2, phospholamban, and calsequestrin, which ultimately results in left ventricular ejection and dilation. Based on data and evidence, the associated proteins can be considered as clinical markers to develop medications for patients. Even with the advancement of various diagnosing tools and modified drugs to mitigate DOX-induced cardiotoxicity, the risk could not be surmounted with survivors of cancer.


Subject(s)
Doxorubicin/pharmacology , Animals , Cardiotoxicity/drug therapy , Humans , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects
7.
J Biochem Mol Toxicol ; 35(2): e22640, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33078895

ABSTRACT

Epidemiological and molecular studies have indicated that environmental exposure to organophosphate pesticides (OPPs) is associated with increased cancer risk; however, the underlying molecular mechanisms still need to be explained. Increasing cancer incidence is linked to OPPs-induced oxidative stress (OS). Our study evaluates monocrotophos (MCP) and chlorpyrifos (CP)-induced OS responses and apurinic/apyrimidinic endonuclease 1 (APE1) role in human non-small-cell lung cancer (NSCLC) cells. Our prior study has implicated OPPs-induced base excision repair (BER)-pathway dysregulation and APE1-mediated regulation of transcription factor (TF) c-jun in A549 cells. We further investigated the effects of MCP and CP on apoptosis, proliferation, and APE1's redox-regulation of nuclear factor-like 2 (Nrf2). Data demonstrates that MCP and CP at subtoxic concentrations induced reactive oxygen species generation and oxidative DNA base damage 8-oxo-dG lesions in NCI-H1299 cells. CP moderately upregulated the apoptosis-inducing factor (AIF) in A549 cells, however, it did not trigger other pro-apoptotic factors viz. caspase-9 and caspase-3, suggesting early caspase-independent apoptosis. However, dose-dependent AIF-downregulation was observed for MCP treatment. Furthermore, CP and MCP treatments upregulated proliferating cell nuclear antigen levels. Immunofluorescent confocal imaging showed the colocalization of APE1 with Nrf2 in 10 µM CP- and MCP-treated NCI-H1299 cells. Immunoprecipitation confirmed that APE1 and Nrf2 physically interacted, indicating the role of APE1-mediated Nrf2 activation following OPPs treatment. This study suggests that low concentration MCP and CP exposure generates OS along with DNA damage, and modulates apoptosis, and APE1-mediated Nrf2 activation, which might be considered as the possible mechanism promoting lung cancer cell survival, suggesting that APE1 may have the potential to become a therapeutic target for the treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cell Survival/drug effects , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Lung Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , Organophosphorus Compounds/toxicity , Pesticides/toxicity , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , DNA Damage , DNA Repair , Humans , Lung Neoplasms/metabolism , Oxidative Stress/drug effects , Proliferating Cell Nuclear Antigen/metabolism , Reactive Oxygen Species/metabolism
8.
Metab Brain Dis ; 36(5): 751-765, 2021 06.
Article in English | MEDLINE | ID: mdl-33651273

ABSTRACT

Pyruvate kinase (PK) catalyzes the last irreversible reaction of glycolysis pathway, generating pyruvate and ATP, from Phosphoenol Pyruvate (PEP) and ADP precursors. In mammals, four different tissue-specific isoforms (M1, M2, L and R) of PK exist, which are translated from two genes (PKL and PKR). PKM2 is the highly expressed isoform of PK in cancers, which regulates the aerobic glycolysis via reprogramming cancer cell's metabolic pathways to provide an anabolic advantage to the tumor cells. In addition to the established role of PKM2 in aerobic glycolysis of multiple cancer types, various recent findings have highlighted the non-metabolic functions of PKM2 in brain tumor development. Nuclear PKM2 acts as a co-activator and directly regulates gene transcription. PKM2 dependent transactivation of various oncogenic genes is instrumental in the progression and aggressiveness of Glioblastoma Multiforme (GBM). Also, PKM2 acts as a protein kinase in histone modification which regulates gene expression and tumorigenesis. Ongoing research has explored novel regulatory mechanisms of PKM2 and its association in GBM progression. This review enlists and summarizes the metabolic and non-metabolic roles of PKM2 at the cellular level, and its regulatory function highlights the importance of the nuclear functions of PKM2 in GBM progression, and an emerging role of PKM2 as novel cancer therapeutics.


Subject(s)
Brain Neoplasms/metabolism , Brain/metabolism , Glioblastoma/metabolism , Pyruvate Kinase/metabolism , Brain/pathology , Brain Neoplasms/pathology , Glioblastoma/pathology , Glycolysis/physiology , Humans
9.
Environ Toxicol ; 35(11): 1241-1250, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32686900

ABSTRACT

Being one of the notorious weed P. hysterophorus has invaded almost every part India and is the lead cause of skin allergies and severe dermatitis among farmers and rural population. It is an invasive obnoxious weed capable of surviving extreme environmental conditions and various parts of this plant are reported to cause severe contact allergies in humans due to the presence of high concentrations of toxic sesquiterpene lactones viz. parthenin. It can stimulate numerous cellular and immune responses that may translate into Oxidative stress, allergies, and inflammation. The effect of P. hysterophorus flower extract was evaluated on cell viability, oxidative stress and inflammation in A549 lung cancer cell line by spectrophotometric and reverse transcriptase-polymerase chain reaction methods. Schrodinger software based docking was performed for possible interactions studies. The A549 cells treated with P. hysterophorus flower extract favors increase in cell viability, reactive oxygen species generation. The mRNA expression of proinflammatory cytokines such as IFN-γ, TNF-α, and IL-1ß was significantly increased whereas no change in IL-18 expression was observed. Significant increase in protein expression of NF-κB was observed, suggesting the role of NF-κB signalling in allergic responses. The docking studies demonstrated the potential interaction between Parthenin and NF-κB/IL-1ß/IL-18 suggesting their activation leading to inflammation. The current study emphasize that P. hysterophorus mediates oxidative stress, and inflammatory process via alterations in expression of proinflammatory cytokines such as IL-1ß, IFN-γ through NF-κB activation which was also confirmed in docking studies. Cellular and molecular mechanisms involved in pathogenesis of allergic/chronic inflammation and severe dermatitis need to be further investigated to identify specific binding partners responsible for severe inflammation which can provide some leads in developing effective targets against severe dermatitis and skin allergies.


Subject(s)
NF-kappa B/metabolism , Plant Extracts/pharmacology , A549 Cells , Cytokines/metabolism , Humans , Inflammation/metabolism , Interleukin-1beta , Lung Neoplasms , Parthenogenesis , Sesquiterpenes , Signal Transduction/drug effects , Transcription Factor RelA , Tumor Necrosis Factor-alpha/metabolism
10.
Mol Cell Biochem ; 450(1-2): 135-147, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29938378

ABSTRACT

The immune responses, involved in recognition of cancer-specific antigens, are of particular interest as this may provide major leads towards developing new vaccines and antibody therapies against cancer. An effective treatment for cancer is still a challenge because there are many mechanisms through which the tumor cells can escape the host immune surveillance. Oxidative stress or respiratory burst which is host's mechanism to kill the foreign particles is used as defense mechanism by the tumor cells. The tumor cells uses this oxidative stress to form neo-antigens which in turn makes them undetectable and can escape the host immune surveillance. The human lung carcinoma (A549) cells were treated using 100 µM H2O2 to induce oxidative stress, and the extent oxidative modifications were detected at the level of membrane and proteins in form of lipid peroxidation and protein carbonyls respectively. Nitric oxide and iNOS levels were estimated by Griess assay and immunostaining, respectively. The oxidized tumor proteins were visualized on one-dimensional SDS-PAGE. The H2O2-treated (15 min and 24 h post-treatment) A549 cells were co-cultured with THP-1 cells to subsequently visualize the phagocytic activity by Giemsa and CFSE staining to understand the role of neo (oxidized) tumor antigens in eliciting alteration in immune responses. A significant decline in the percent engulfed cells and decrease in the levels of reactive oxygen species was observed. Immunohistostaining for p47phox, which is an important indicator of the oxygen-dependent phagocytosis, showed a decrease in its levels when cells were treated for only 15 min with 100 µM H2O2, whereas at 24-h post-treatment there was no change in the p47phox levels. The study has established oxidative stress as a new pathogenic mechanism of carcinogenesis and will open new avenues for clinical intervention, adjunct therapies for cancer, and its control at the initial stage by targeting these neo-antigens.


Subject(s)
Hydrogen Peroxide/pharmacology , Immunity, Innate/drug effects , Lung Neoplasms/immunology , Oxidative Stress/drug effects , A549 Cells , Humans , Lung Neoplasms/pathology , THP-1 Cells
11.
J Cell Biochem ; 119(7): 5028-5042, 2018 07.
Article in English | MEDLINE | ID: mdl-29327370

ABSTRACT

Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy.


Subject(s)
Carcinogenesis/immunology , Carcinogenesis/pathology , Neoplasms/immunology , Neoplasms/pathology , Animals , Carcinogenesis/metabolism , Cytokines/metabolism , Humans , Immunity, Cellular/immunology , Immunotherapy , Neoplasms/metabolism , Neoplasms/therapy
12.
Microb Pathog ; 125: 468-474, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30316008

ABSTRACT

Helicobacter pylori is a leading cause of gastric cancer worldwide, its type four secretary toxin CagA is cited to be primarily responsible for it. Other virulence factors such as urease, VacA, HopQ, BabA and SabA are responsible for bacterial survival in acidic environment, adherence and cellular damage but its molecular mechanism is not completely understood. A number of pathogens including bacteria, fungi and virus are involved in the regulation of cellular machinery of inflammasome. Inflammasomes are multimeric protein complexes formed after external stimuli such as PAMPs/DAMPs or salt crystals and activates cellular caspases causes inflammation via pro-inflammatory cytokines. Virulence factors associated with microbial pathogens causes' cellular damage through damaging mitochondria, rupturing lysosome, producing endoplasmic stress and dysregulation of cellular ions balance. These cellular dysfunctioning leads to oxidative stress, cathepsin B production, nuclear and mitochondrial DNA damage which activates inflammasome machinery, pro-inflammatory cytokine release and cellular death known as pyroptosis. The mechanism of inflammasome induction by H. pylori is not studied extensively and very few virulence factors such as UreB, CagA, FlaA and VacA and their role in inflammasomes is established. This review elaborates the mechanism of inflammasomes regulation and elucidates the pathways through which H. pylori regulates inflammasome activation.


Subject(s)
Helicobacter Infections/pathology , Helicobacter pylori/growth & development , Host-Pathogen Interactions , Inflammasomes/metabolism , Animals , Gene Expression Regulation , Humans
13.
Mol Cell Biochem ; 441(1-2): 201-216, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28887667

ABSTRACT

Monocrotophos (MCP) and chlorpyrifos (CP) are widely used organophosphate pesticides (OPPs), speculated to be linked with human pathologies including cancer. Owing to the fact that lung cells are most vulnerable to the environmental toxins, the development and progression of lung cancer can be caused by the exposure of OPPs. The present study investigates the oxidative DNA damage response evoked by MCP and CP in human non-small cell lung carcinoma A549 cells. A549 cells were exposed to MCP and CP; cytotoxicity and reactive oxygen species (ROS) generation were measured to select the non-toxic dose. In order to establish whether MCP and CP can initiate the DNA repair and cell survival signalling pathways in A549 cells, qRT-PCR and Western blotting techniques were used to investigate the mRNA and protein expression levels of DNA base excision repair (BER)-pathway enzymes and transcription factors (TFs) involved in cell survival mechanisms. A significant increase in cell viability and ROS generation was observed when exposed to low and moderate doses of MCP and CP at different time points (24, 48 and 72 h) studied. A549 cells displayed a dose-dependent accumulation of apurinic/apyrimidinic (AP) sites after 24 h exposure to MCP advocating for the activation of AP endonuclease-mediated DNA BER-pathway. Cellular responses to MCP- and CP-induced oxidative stress resulted in an imbalance in the mRNA and protein expression of BER-pathway enzymes, viz. PARP1, OGG1, APE1, XRCC1, DNA pol ß and DNA ligase III α at different time points. The treatment of OPPs resulted in the upregulation of TFs, viz. Nrf2, c-jun, phospho-c-jun and inducible nitric oxide synthase. Immunofluorescent confocal imaging of A549 cells indicated that MCP and CP induces the translocation of APE1 within the cytoplasm at an early 6 h time point, whereas it promotes nuclear localization after 24 h of treatment, which suggests that APE1 subcellular distribution is dynamically regulated in response to OPP-induced oxidative stress. Furthermore, nuclear colocalization of APE1 and the TF c-jun was observed in response to the treatment of CP and MCP for different time points in A549 cells. Therefore, in this study we demonstrate that MCP- and CP-induced oxidative stress alters APE1-dependent BER-pathway and also mediates cell survival signalling mechanisms via APE1 regulation, thereby promoting lung cancer cell survival and proliferation.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , DNA Repair/drug effects , DNA, Neoplasm/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Lung Neoplasms/metabolism , Neoplasm Proteins/metabolism , Organophosphates/toxicity , Pesticides/toxicity , A549 Cells , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , DNA Damage , DNA, Neoplasm/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasm Proteins/genetics , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
14.
Bioorg Med Chem ; 26(1): 266-277, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29198894

ABSTRACT

Ground breaking clinical therapeutic advances in the treatment of breast cancer (BC) is the introduction of selective estrogen receptor modulators (SERMs). We have expeditiously designed and synthesized indole-xanthendione hybrids by coalescing the indole nucleus with xanthendione. All the compounds were first screened for anti-proliferative activity, cytotoxicity and ER-α binding affinity by utilizing ER-α dominant T47D BC cell lines, PBMCs and ER-α competitor assay kit. From this study, two representative compounds 6e and 6f showing most promising activity were advanced for gene expression studies for targeting ER-α. Cell imaging experiment undoubtedly indicate that both the compounds were able to cross cellular bio membrane and accumulate thus instigating cytotoxicity. RT-PCR and Western blotting experiments further strengthened that both compounds altered the expression of mRNA and receptor protein of ER-α, thereby forestalling downstream transactivation and signalling pathway in T47D cells line. Structural investigation from induced fit simulation study suggest that indole moiety of the compounds 6e and 6f helps in the anchoring of the xanthendione moiety in the hydrophobic region of the cavity thus enabling the compound to bind in antagonistic conformation similar to bazedoxifene by extensive hydrogen bonding and Van der Waals forces. All these finding collectively imply that compound 6e and 6f represents a novel potent ER-α antagonist and in the development of SERMs for the management of BC.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Estrogen Receptor Modulators/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Indoles/pharmacology , Xanthones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Estrogen Receptor Modulators/chemical synthesis , Estrogen Receptor Modulators/chemistry , Estrogen Receptor alpha/metabolism , Humans , Indoles/chemistry , Molecular Structure , Structure-Activity Relationship , Xanthones/chemistry
15.
Bioorg Chem ; 79: 72-88, 2018 09.
Article in English | MEDLINE | ID: mdl-29723744

ABSTRACT

In the present study, we have designed and synthesized indole derivatives by coalescing the indole nucleus with chromene carbonitrile and dihydropyridine nucleus. Two compounds 5c and 6d were selected from series I and II after sequential combinatorial library generation, docking, absorption, distribution, metabolism and excretion (ADME) filtering, anti-proliferative activity, cytotoxicity, and ER-α competitor assay kit by utilizing estrogen receptor-α (ER-α) dominant T47D BC cells line and PBMCs (Peripheral Blood Mononuclear Cells). Cell imaging experiment suggested that both the compounds successfully cross cellular biomembrane and accumulate in nuclear, cytoplasmic and plasma membrane region. Semiquantitative RT-PCR and Western blotting experiments further supported that both compounds reduced the expression of mRNA and receptor protein of ER-α, thereby preventing downstream transactivation and signaling pathway in T47D cells line. Current findings imply that 5c and 6d represent novel ER-α antagonists and may be used in the development of chemotherapy for the management of BC.


Subject(s)
Acridines/pharmacology , Benzopyrans/pharmacology , Indoles/pharmacology , Selective Estrogen Receptor Modulators/pharmacology , Acridines/chemical synthesis , Acridines/chemistry , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Binding Sites , Cell Line, Tumor , Down-Regulation , Drug Design , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Docking Simulation , RNA, Messenger/genetics , Selective Estrogen Receptor Modulators/chemical synthesis , Selective Estrogen Receptor Modulators/chemistry
16.
Metab Brain Dis ; 33(4): 1307-1326, 2018 08.
Article in English | MEDLINE | ID: mdl-29721771

ABSTRACT

Maintaining genomic integrity is essential for cell survival and viability. Reactive oxygen species (ROS) overproduction results in oxidative stress leading to the genomic instability via generation of small base lesions in DNA and these unrepaired DNA damages lead to various cellular consequences including cancer. Recent data support the concept "oxidative stress is an indispensable participant in fostering proliferation, survival, and migration" in various cancer cell types including glioblastoma cells. In this study we demonstrate that treatment of non-cytotoxic doses of oxidants such as amyloid beta [Aß(25-35)] peptide, glucose oxidase (GO), and hydrogen peroxide (H2O2) for 24 h and 48 h time points found to increase the expression level and activity of a multifunctional enzyme Apurinic/apyrimidinic endonuclease (APE1), a key enzyme of base excision repair (BER) pathway which takes care of base damages; and also resulted in modulation in the expression levels of downstream BER-pathway enzymes viz. PARP-1, XRCC1, DNA polß, and ligase IIIα was observed upon oxidative stress in C6 and U-87 MG cells. Oxidants treatment to the C6 and U-87 MG cells also resulted in an elevation in the intracellular expression of glycolytic pathway enzyme Pyruvate kinase M2 (PKM2) and the metastasis inducer protein Ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) as analyzed using Western blotting and Immunofluorescence microscopic studies. Our study also reports that oxidative stress induced for 24 h and 48 h in C6 and U-87 MG cells resulted in extracellular secretion of APE1 and ENPP2 as analyzed using Western blotting in conditioned media. However, the biological significance of extracellular secreted APE1 remains elusive. Oxidative stress also elevated the ENPP2's LysoPLD activity in conditioned media of C6 and U-87 MG cells. Our results also demonstrate that oxidative stress affects the expression level and localization of APE1, PKM2, and ENPP2 in C6 and U-87 MG cells. As evidenced by the colocalization pattern at 24 h and 48 h time points, it can be attributed that oxidative stress mediates crosstalk between APE1, PKM2, and ENPP2. In addition, when C6 and U-87 MG cells were treated with lysophosphatidic acid (LPA), a bioactive lipid that negatively regulates ENPP2's LysoPLD activity at 10 µM concentration, demonstrated strong migratory potential in C6 and U-87 MG cells, and also induced migration upon oxidative stress. Altogether, the findings demonstrate the potential of C6 and U-87 MG cells to utilize three proteins viz. APE1, PKM2, and ENPP2 towards migration and survival of gliomas. Thus the knowledge on oxidative stress induced APE1's interaction with PKM2 and ENPP2 opens a new channel for the therapeutic target(s) for gliomas.


Subject(s)
Carrier Proteins/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Glioblastoma/metabolism , Membrane Proteins/metabolism , Neoplasm Invasiveness/pathology , Oxidative Stress/physiology , Phosphoric Diester Hydrolases/metabolism , Thyroid Hormones/metabolism , Animals , Cell Line, Tumor , Glioblastoma/pathology , Humans , Rats , Signal Transduction/physiology , Thyroid Hormone-Binding Proteins
17.
Metab Brain Dis ; 32(6): 2045-2061, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28861684

ABSTRACT

Amyloid beta (Aß) peptide deposition is the primary cause of neurodegeneration in Alzheimer's disease (AD) pathogenesis. Several reports point towards the role of pesticides in the AD pathogenesis, especially organophosphate pesticides (OPPs). Monocrotophos (MCP) and Chlorpyrifos (CP) are the most widely used OPPs. In this study, the role of MCP and CP in augmenting the Aß-induced oxidative stress associated with the neurodegeneration in AD has been assessed in human neuroblastoma IMR-32 and SH-SY5Y cell lines. From the cell survival assay, it was observed that MCP and CP reduced cell survival both dose- and time-dependently. Nitro blue tetrazolium (NBT) based assay for determination of intracellular reactive oxygen species (ROS) demonstrated that Aß(25-35), MCP or CP produce significant oxidative stress alone or synergistically in IMR-32 and SH-SY5Y cells, while pretreatment of curcumin reduced ROS levels significantly in all treatment combinations. In this study, we also demonstrate that treatment of Aß(25-35) and MCP upregulated inducible nitric oxide synthase (iNOS/NOS2) whereas, no change was observed in neuronal nitric oxide synthase (nNOS/NOS1), but down-regulation of the nuclear factor erythroid 2-related factor 2 (Nrf2) level was observed. While curcumin pretreatment resulted in upregulation of iNOS and Nrf2 proteins. Also, the expression of key DNA repair enzymes APE1, DNA polymerase beta (Pol ß), and PARP1 were found to be downregulated upon treatment with MCP, Aß(25-35) and their combinations at 24 h and 48 h time points. In this study, pretreatment of curcumin to the SH-SY5Y cells enhanced the expression of DNA repair enzymes APE1, pol ß, and PARP1 enzymes to counter the oxidative DNA base damage via base excision repair (BER) pathway, and also activated the antioxidant element (ARE) via Nrf2 upregulation. Furthermore, the immunofluorescent confocal imaging studies in SH-SY5Y and IMR-32 cells treated with Aß(25-35) and MCP-mediated oxidative stress and their combinations at different time periods suggesting for cross-talk between the two proteins APE1 and Nrf2. The APE1's association with Nrf2 might be associated with the redox function of APE1 that might be directly regulating the ARE-mediated neuronal survival mechanisms.


Subject(s)
Amyloid beta-Peptides/pharmacology , Cell Survival/drug effects , Curcumin/pharmacology , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , NF-E2-Related Factor 2/metabolism , Neurons/drug effects , Neuroprotective Agents/pharmacology , Organophosphates/pharmacology , Peptide Fragments/pharmacology , Cell Line, Tumor , Chlorpyrifos/pharmacology , Humans , Monocrotophos/pharmacology , Neurons/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects
18.
Metab Brain Dis ; 32(5): 1705-1716, 2017 10.
Article in English | MEDLINE | ID: mdl-28676971

ABSTRACT

Glial cells protect themselves from the elevated reactive oxygen species (ROS) via developing unusual mechanisms to maintain the genomic stability, and reprogramming of the cellular antioxidant system to cope with the adverse effects. In the present study non-cytotoxic dose of oxidants, H2O2 (100 µM) and GO (10 µU/ml) was used to induce moderate oxidative stress via generating ROS in human glioblastoma cell line U-87 MG cells, which showed a marked increase in the antioxidant capacity as studied by measuring the modulation in expression levels and activities of superoxide dismutase (SOD1 and SOD2) and catalase (CAT) enzymes, and the GSH content. However, pretreatment (3 h) of Curcumin and Quercetin (10 µM) followed by the treatment of oxidants enhanced the cell survival, and the levels/activities of the antioxidants studied. Oxidative stress also resulted in an increase in the nitrite levels in the culture supernatants, and further analysis by immunocytochemistry showed an increase in iNOS expression. In addition, phytochemical pretreatment decreased the nitrite level in the culture supernatants of oxidatively stressed U-87 MG cells. Elevated ROS also increased the expression of COX-2 and APE1 enzymes and pretreatment of Curcumin and Quercetin decreased COX-2 expression and increased APE1 expression in the oxidatively stressed U-87 MG cells. The immunocytochemistry also indicates for APE1 enhanced stress-dependent subcellular localization to the nuclear compartment, which advocates for enhanced DNA repair and redox functions of APE1 towards survival of U-87 MG cells. It can be concluded that intracellular oxidants activate the key enzymes involved in antioxidant mechanisms, NO-dependent survival mechanisms, and also in the DNA repair pathways for glial cell survival in oxidative-stress micro-environment.


Subject(s)
Antioxidants/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Glucose Oxidase/metabolism , Hydrogen Peroxide/metabolism , Antioxidants/pharmacology , Brain Neoplasms/pathology , Catalase/metabolism , Cell Line, Tumor , Cell Survival , Cyclooxygenase 2/biosynthesis , DNA-(Apurinic or Apyrimidinic Site) Lyase/biosynthesis , Glioblastoma/pathology , Glutathione/metabolism , Humans , Nitric Oxide Synthase Type II/biosynthesis , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/metabolism
19.
Infect Immun ; 84(6): 1842-1856, 2016 06.
Article in English | MEDLINE | ID: mdl-27068090

ABSTRACT

Trypanosoma cruzi species is categorized into six discrete typing units (TcI to TcVI) of which TcI is most abundantly noted in the sylvatic transmission cycle and considered the major cause of human disease. In our study, the TcI strains Colombiana (COL), SylvioX10/4 (SYL), and a cultured clone (TCC) exhibited different biological behavior in a murine model, ranging from high parasitemia and symptomatic cardiomyopathy (SYL), mild parasitemia and high tissue tropism (COL), to no pathogenicity (TCC). Proteomic profiling of the insect (epimastigote) and infective (trypomastigote) forms by two-dimensional gel electrophoresis/matrix-assisted laser desorption ionization-time of flight mass spectrometry, followed by functional annotation of the differential proteome data sets (≥2-fold change, P < 0.05), showed that several proteins involved in (i) cytoskeletal assembly and remodeling, essential for flagellar wave frequency and amplitude and forward motility of the parasite, and (ii) the parasite-specific antioxidant network were enhanced in COL and SYL (versus TCC) trypomastigotes. Western blotting confirmed the enhanced protein levels of cytosolic and mitochondrial tryparedoxin peroxidases and their substrate (tryparedoxin) and iron superoxide dismutase in COL and SYL (versus TCC) trypomastigotes. Further, COL and SYL (but not TCC) were resistant to exogenous treatment with stable oxidants (H2O2 and peroxynitrite [ONOO(-)]) and dampened the intracellular superoxide and nitric oxide response in macrophages, and thus these isolates escaped from macrophages. Our findings suggest that protein expression conducive to increase in motility and control of macrophage-derived free radicals provides survival and persistence benefits to TcI isolates of T. cruzi.


Subject(s)
Antioxidants/metabolism , Chagas Disease/genetics , Life Cycle Stages/genetics , Macrophages/metabolism , Protozoan Proteins/genetics , Trypanosoma cruzi/pathogenicity , Animals , Chagas Disease/metabolism , Chagas Disease/parasitology , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Humans , Hydrogen Peroxide/pharmacology , Life Cycle Stages/drug effects , Macrophages/parasitology , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Parasitemia/genetics , Parasitemia/metabolism , Parasitemia/parasitology , Peroxidases/genetics , Peroxidases/metabolism , Peroxynitrous Acid/pharmacology , Protozoan Proteins/metabolism , Severity of Illness Index , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development
20.
PLoS Pathog ; 10(12): e1004516, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25474113

ABSTRACT

Macrophage activation of NAD(P)H oxidase (NOX2) and reactive oxygen species (ROS) is suggested to kill Trypanosoma cruzi that causes Chagas disease. However, the role of NOX2 in generation of protective immunity and whether these mechanisms are deregulated in the event of NOX2 deficiency are not known, and examined in this study. Our data showed that C57BL/6 p47(phox-/-) mice (lack NOX2 activity), as compared to wild-type (WT) mice, succumbed within 30 days post-infection (pi) to low doses of T. cruzi and exhibited inability to control tissue parasites. P47(phox-/-) bone-marrow and splenic monocytes were not compromised in maturation, phagocytosis and parasite uptake capacity. The deficiency of NOX2 mediated ROS was compensated by higher level of inducible nitric oxide synthase (iNOS) expression, and nitric oxide and inflammatory cytokine (TNF-α, IFN-γ, IL-1ß) release by p47(phox-/-) macrophages as compared to that noted in WT controls infected by T. cruzi. Splenic activation of Th1 CD4(+)T cells and tissue infiltration of immune cells in T. cruzi infected p47(phox-/-) mice were comparable to that noted in infected control mice. However, generation and activation of type 1 CD8(+)T cells was severely compromised in p47(phox-/-) mice. In comparison, WT mice exhibited a robust T. cruzi-specific CD8(+)T cell response with type 1 (IFN-γ(+)TNF-α>IL-4+IL-10), cytolytic effector (CD8(+)CD107a(+)IFN-γ(+)) phenotype. We conclude that NOX2/ROS activity in macrophages signals the development of antigen-specific CD8(+)T cell response. In the event of NOX2 deficiency, a compromised CD8(+)T cell response is generated, leading to increased parasite burden, tissue pathogenesis and mortality in chagasic mice.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chagas Disease/immunology , Immunity, Cellular , NADPH Oxidases/immunology , Signal Transduction/immunology , Trypanosoma cruzi/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Chagas Disease/genetics , Cytokines/genetics , Cytokines/immunology , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Knockout , Monocytes/immunology , Monocytes/pathology , NADPH Oxidases/genetics , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/immunology , Reactive Oxygen Species/immunology , Signal Transduction/genetics , Th1 Cells/immunology , Th1 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL