Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Affiliation country
Publication year range
1.
J Virol ; 98(3): e0191523, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38334327

ABSTRACT

As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE: In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.


Subject(s)
Macrophages , Newcastle Disease , Newcastle disease virus , Signal Transduction , Virus Internalization , Animals , Endocytosis , Gangliosides/metabolism , Macrophages/metabolism , Macrophages/virology , Newcastle Disease/virology , Newcastle disease virus/physiology , rho GTP-Binding Proteins/metabolism
2.
ACS Sens ; 5(4): 1140-1148, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32207302

ABSTRACT

Chlamydia pneumoniae is a spherical zoonotic pathogen with a diameter of ∼200 nm, which can lead to a wide range of acute and chronic diseases in human body. Early and reliable on-site detection of C. pneumoniae is the key step to control the spread of the pathogen. However, the lack of a current technology with advantages of rapidity, ultrasensitivity, and convenience limits the implementation of traditional techniques for on-site detection of C. pneumoniae. Herein, we developed a naked-eye counting of C. pneumoniae based on the light scattering properties of gold nanoparticle (GNP) under dark-field microscopy (termed "GNP-labeled dark-field counting strategy"). The recognition of single C. pneumoniae by anti-C. pneumoniae antibodies-functionalized GNP probes with size of 15 nm leads to the formation of wreath-like structure due to the strong scattered light resulted from hundreds of GNP probes binding on one C. pneumoniae under dark-field microscopy. Hundreds of GNP probes can bind to the surface of C. pneumoniae due to the high stability and specificity of the nucleic acid immuno-GNP probes, which generates by the hybridization of DNA-modified GNP with DNA-functionalized antibodies. The limit of detection (LOD) of the GNP-labeled dark-field counting strategy for C. pneumoniae detection in spiked samples or real samples is down to four C. pneumoniae per microliter, which is about 4 times more sensitive than that of quantitative polymerase chain reaction (qPCR). Together with the advantages of the strong light scattering characteristic of aggregated GNPs under dark-field microscopy and the specific identification of functionalized GNP probes, we can detect C. pneumoniae in less than 30 min using a cheap and portable microscope even if the sample contains only a few targets of interest and other species at high concentration. The GNP-labeled dark-field counting strategy meets the demands of rapid detection, low cost, easy to operate, and on-site detection, which paves the way for early and on-site detection of infectious pathogens.


Subject(s)
Biosensing Techniques/methods , Chlamydial Pneumonia/diagnosis , Chlamydophila pneumoniae/pathogenicity , Dynamic Light Scattering/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Limit of Detection
3.
Ying Yong Sheng Tai Xue Bao ; 31(3): 794-806, 2020 Mar.
Article in Zh | MEDLINE | ID: mdl-32537974

ABSTRACT

The status of matching degree among water, soil, and heat resources determines ecosystem stability and sustainability. Under the framework of ecosystem services related to human well-being, we constructed the matching index of water, soil, and heat resources in Central Asia by the vegetation net primary productivity (NPP) index method based on remote sensing data. We analyzed the spatio-temporal characteristics of the matching degree in Central Asia, and correlations between the matching degree and climatic factors, water use efficiency using trend analysis and the Hurst index. The results showed that the matching degree of water, soil, and heat resources was generally low in Central Asia with a mean value of 9.3. There were obvious differences in the mat-ching degree in different biomes, with the order of alpine forest region > alpine meadow region > typical steppe region > desert steppe region > lake > desert region. From 2000 to 2015, the matching degree of water, soil, and heat resources in each biome and in the whole Central Asia showed a fluctuating downward trend. However, the matching degree changed slightly, with relatively poor persistence. There was a large difference and misalignment of spatial variation in temperature and precipitation, which was the main cause of low matching degree of water, soil, and heat resources. The effect of precipitation on the matching degree of water, soil, and heat resources in Central Asia was stronger than that of the temperature. There was a strong correlation between the matching degree and water use efficiency in Central Asia.


Subject(s)
Ecosystem , Soil , Asia , China , Hot Temperature , Humans , Water
SELECTION OF CITATIONS
SEARCH DETAIL