Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant J ; 86(4): 289-99, 2016 05.
Article in English | MEDLINE | ID: mdl-26991058

ABSTRACT

Tropical sandalwood (Santalum album) produces one of the world's most highly prized fragrances, which is extracted from mature heartwood. However, in some places such as southern India, natural populations of this slow-growing tree are threatened by over-exploitation. Sandalwood oil contains four major and fragrance-defining sesquiterpenols: (Z)-α-santalol, (Z)-ß-santalol, (Z)-epi-ß-santalol and (Z)-α-exo-bergamotol. The first committed step in their biosynthesis is catalyzed by a multi-product santalene/bergamotene synthase. Sandalwood cytochromes P450 of the CYP76F sub-family were recently shown to hydroxylate santalenes and bergamotene; however, these enzymes produced mostly (E)-santalols and (E)-α-exo-bergamotol. We hypothesized that different santalene/bergamotene hydroxylases evolved in S. album to stereo-selectively produce (E)- or (Z)-sesquiterpenols, and that genes encoding (Z)-specific P450s contribute to sandalwood oil formation if co-expressed in the heartwood with upstream genes of sesquiterpene biosynthesis. This hypothesis was validated by the discovery of a heartwood-specific transcriptome signature for sesquiterpenoid biosynthesis, including highly expressed SaCYP736A167 transcripts. We characterized SaCYP736A167 as a multi-substrate P450, which stereo-selectively produces (Z)-α-santalol, (Z)-ß-santalol, (Z)-epi-ß-santalol and (Z)-α-exo-bergamotol, matching authentic sandalwood oil. This work completes the discovery of the biosynthetic enzymes of key components of sandalwood fragrance, and highlights the evolutionary diversification of stereo-selective P450s in sesquiterpenoid biosynthesis. Bioengineering of microbial systems using SaCYP736A167, combined with santalene/bergamotene synthase, has potential for development of alternative industrial production systems for sandalwood oil fragrances.


Subject(s)
Biosynthetic Pathways , Plant Oils/metabolism , Santalum/metabolism , Sesquiterpenes/metabolism , Transcriptome , Cytochrome P-450 Enzyme System/metabolism , Genes, Plant , Phylogeny , Plant Oils/chemistry , Polycyclic Sesquiterpenes , Santalum/enzymology , Santalum/genetics , Sesquiterpenes/chemistry
2.
PLoS One ; 8(9): e75053, 2013.
Article in English | MEDLINE | ID: mdl-24324844

ABSTRACT

Sandalwood oil is one of the world's most highly prized essential oils, appearing in many high-end perfumes and fragrances. Extracted from the mature heartwood of several Santalum species, sandalwood oil is comprised mainly of sesquiterpene olefins and alcohols. Four sesquiterpenols, α-, ß-, and epi-ß-santalol and α-exo-bergamotol, make up approximately 90% of the oil of Santalum album. These compounds are the hydroxylated analogues of α-, ß-, and epi-ß-santalene and α-exo-bergamotene. By mining a transcriptome database of S. album for candidate cytochrome P450 genes, we cloned and characterized cDNAs encoding a small family of ten cytochrome P450-dependent monooxygenases annotated as SaCYP76F37v1, SaCYP76F37v2, SaCYP76F38v1, SaCYP76F38v2, SaCYP76F39v1, SaCYP76F39v2, SaCYP76F40, SaCYP76F41, SaCYP76F42, and SaCYP76F43. Nine of these genes were functionally characterized using in vitro assays and yeast in vivo assays to encode santalene/bergamotene oxidases and bergamotene oxidases. These results provide a foundation for production of sandalwood oil for the fragrance industry by means of metabolic engineering, as demonstrated with proof-of-concept formation of santalols and bergamotol in engineered yeast cells, simultaneously addressing conservation challenges by reducing pressure on supply of sandalwood from native forests.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Plant Oils/metabolism , Santalum/metabolism , Sesquiterpenes/metabolism , Cloning, Molecular , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , DNA, Complementary/genetics , Gas Chromatography-Mass Spectrometry , Gene Expression , Isoenzymes , Kinetics , Phylogeny , Plant Oils/chemistry , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Polycyclic Sesquiterpenes , Santalum/classification , Santalum/genetics , Sesquiterpenes/chemistry , Substrate Specificity , Yeasts/genetics , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL