Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Metab ; 42: 101083, 2020 12.
Article in English | MEDLINE | ID: mdl-32956848

ABSTRACT

OBJECTIVE: Individuals born with intrauterine growth retardation (IUGR) are more prone to cardio-metabolic diseases as adults, and environmental changes during the perinatal period have been identified as potentially crucial factors. We have studied in a preclinical model early-onset molecular alterations present before the development of a clinical phenotype. METHODS: We used a preclinical mouse model of induced IUGR, in which we modulated the nutrition of the pups during the suckling period, to modify their susceptibility to cardio-metabolic diseases in adulthood. RESULTS: Mice born with IUGR that were overfed (IUGR-O) during lactation rapidly developed obesity, hepatic steatosis and insulin resistance, by three months of age, whereas those subjected to nutrition restriction during lactation (IUGR-R) remained permanently thin and highly sensitive to insulin. Mice born with IUGR and fed normally during lactation (IUGR-N) presented an intermediate phenotype and developed insulin resistance by 12 months of age. Molecular alterations to the insulin signaling pathway with an early onset were observed in the livers of adult IUGR-N mice, nine months before the appearance of insulin resistance. The implication of epigenetic changes was revealed by ChIP sequencing, with both posttranslational H3K4me3 histone modifications and microRNAs involved. CONCLUSIONS: These two changes lead to the coherent regulation of insulin signaling, with a decrease in Akt gene transcription associated with an increase in the translation of its inhibitor, Pten. Moreover, we found that the levels of the implicated miRNA19a-3p also decreased in the blood of young adult IUGR mice nine months before the appearance of insulin resistance, suggesting a possible role for this miRNA as an early circulating biomarker of metabolic fate of potential use for precision medicine.


Subject(s)
Fetal Growth Retardation/genetics , Insulin Resistance/genetics , MicroRNAs/genetics , Animals , Cell-Free Nucleic Acids/genetics , Disease Models, Animal , Female , Fetal Growth Retardation/blood , Fetal Growth Retardation/metabolism , Histones , Insulin/metabolism , Insulin Resistance/physiology , Insulin-Like Growth Factor I/metabolism , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , MicroRNAs/blood , MicroRNAs/metabolism , Signal Transduction
2.
Oncotarget ; 6(28): 24969-77, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26327213

ABSTRACT

Mismatch-repair (MMR)-deficient cells show increased in vitro tolerance to thiopurines because they escape apoptosis resulting from MMR-dependent signaling of drug-induced DNA damage. Prolonged treatment with immunosuppressants including azathioprine (Aza), a thiopurine prodrug, has been suggested as a risk factor for the development of late onset leukemias/lymphomas displaying a microsatellite instability (MSI) phenotype, the hallmark of a defective MMR system. We performed a dose effect study in mice to investigate the development of MSI lymphomas associated with long term Aza treatment. Over two years, Aza was administered to mice that were wild type, null or heterozygous for the MMR gene Msh2. Ciclosporin A, an immunosuppressant with an MMR-independent signaling, was also administered to Msh2(wt) mice as controls. Survival, lymphoma incidence and MSI tumor phenotype were investigated. Msh2(+/-) mice were found more tolerant than Msh2(wt) mice to the cytotoxicity of Aza. In Msh2(+/-) mice, Aza induced a high incidence of MSI lymphomas in a dose-dependent manner. In Msh2(wt) mice, a substantial lifespan was only observed at the lowest Aza dose. It was associated with the development of lymphomas, one of which displayed the MSI phenotype, unlike the CsA-induced lymphomas. Our findings define Aza as a risk factor for an MSI-driven lymphomagenesis process.


Subject(s)
Azathioprine/toxicity , Lymphoma/genetics , Microsatellite Instability , MutS Homolog 2 Protein/genetics , Adult , Aged , Animals , DNA Mismatch Repair/genetics , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Immunohistochemistry , Immunosuppressive Agents/toxicity , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Kaplan-Meier Estimate , Lymphoma/chemically induced , Lymphoma/metabolism , Male , Mice, Knockout , Middle Aged , MutS Homolog 2 Protein/metabolism , Phenotype , Risk Assessment/methods , Risk Factors , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL