Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Am J Pathol ; 194(7): 1346-1373, 2024 07.
Article in English | MEDLINE | ID: mdl-38631549

ABSTRACT

Because the mechanotransduction by stromal stiffness stimulates the rupture and repair of the nuclear envelope in pancreatic progenitor cells, accumulated genomic aberrations are under selection in the tumor microenvironment. Analysis of cell growth, micronuclei, and phosphorylated Ser-139 residue of the histone variant H2AX (γH2AX) foci linked to mechanotransduction pressure in vivo during serial orthotopic passages of mouse KrasLSL-G12D/+;Trp53flox/flox;Pdx1-Cre (KPC) cancer cells in the tumor and in migrating through the size-restricted 3-µm micropores. To search for pancreatic cancer cell-of-origin, analysis of single-cell data sets revealed that the extracellular matrix shaped an alternate route of acinar-ductal transdifferentiation of acinar cells into topoisomerase II α (TOP2A)-overexpressing cancer cells and derived subclusters with copy number amplifications in MYC-PTK2 (protein tyrosine kinase 2) locus and PIK3CA. High-PTK2 expression is associated with 171 differentially methylated CpG loci, 319 differentially expressed genes, and poor overall survival in The Cancer Genome Atlas-Pancreatic Adenocarcinoma cohort. Abolished RGD-integrin signaling by disintegrin KG blocked the PTK2 phosphorylation, increased cancer apoptosis, decreased vav guanine nucleotide exchange factor 1 (VAV1) expression, and prolonged overall survival in the KPC mice. Reduction of α-smooth muscle actin deposition in the CD248 knockout KPC mice remodeled the tissue stroma and down-regulated TOP2A expression in the epithelium. In summary, stromal stiffness induced the onset of cancer cells-of-origin by ectopic TOP2A expression, and the genomic amplification of MYC-PTK2 locus via alternative transdifferentiation of pancreatic progenitor cells is the vulnerability useful for disintegrin KG treatment.


Subject(s)
Chromosomal Instability , Disease Progression , Pancreatic Neoplasms , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Mice , Humans , Carcinoma in Situ/pathology , Carcinoma in Situ/genetics , Carcinoma in Situ/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Tumor Microenvironment , Mechanotransduction, Cellular , Focal Adhesion Kinase 1
2.
Proc Natl Acad Sci U S A ; 119(13): e2116506119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35333651

ABSTRACT

SignificanceTirzepatide is a dual agonist of the glucose-dependent insulinotropic polypeptide receptor (GIPR) and the glucagon-like peptide-1 receptor (GLP-1R), which are incretin receptors that regulate carbohydrate metabolism. This investigational agent has proven superior to selective GLP-1R agonists in clinical trials in subjects with type 2 diabetes mellitus. Intriguingly, although tirzepatide closely resembles native GIP in how it activates the GIPR, it differs markedly from GLP-1 in its activation of the GLP-1R, resulting in less agonist-induced receptor desensitization. We report how cryogenic electron microscopy and molecular dynamics simulations inform the structural basis for the unique pharmacology of tirzepatide. These studies reveal the extent to which fatty acid modification, combined with amino acid sequence, determines the mode of action of a multireceptor agonist.


Subject(s)
Diabetes Mellitus, Type 2 , Receptors, Gastrointestinal Hormone , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Gastric Inhibitory Polypeptide/therapeutic use , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Incretins/pharmacology , Receptors, Gastrointestinal Hormone/agonists , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Gastrointestinal Hormone/therapeutic use
3.
J Pharmacol Exp Ther ; 382(3): 346-355, 2022 09.
Article in English | MEDLINE | ID: mdl-35840338

ABSTRACT

The benefit of once-weekly basal insulin is less frequent dosing, which has the potential to reduce the barrier to injection therapy and impact patient activation, adherence and compliance, quality of life, and outcomes. Basal Insulin Fc (BIF, LY3209590, or insulin efsitora alfa) is a once-weekly basal insulin in clinical testing for type 1 and type 2 diabetes mellitus. BIF is comprised of a novel single-chain variant of insulin fused to a human IgG2 fragment crystallizable region of an antibody domain using a peptide linker. The in vitro binding affinity of BIF for the human insulin receptor (IR) was two orders of magnitude weaker relative to human insulin. BIF stimulated IR phosphorylation in cells with reduced potency, yet full agonism, and exhibited a significantly faster dephosphorylation kinetic profile than human insulin or AspB10 insulin. BIF stimulated de novo lipogenesis in 3T3-L1 adipocytes and cell proliferation in SAOS-2 and H4IIE cells with ≥70-fold reduction in in vitro potency compared with human insulin. BIF possessed markedly reduced binding to hIGF-1R, making definitive measurements unattainable. In vivo pharmacology studies using streptozotocin-treated diabetic rats demonstrated a significant decrease in blood glucose compared with vehicle-treated animals 24 hours post-injection, persisting through 336 hours following subcutaneous administration. In streptozotocin-treated rats, BIF reached time at maximum concentration at 48 hours and possessed a clearance rate of ∼0.85 ml/h per kg, with a terminal half-life of ∼120 hours following subcutaneous administration. These results demonstrate BIF has an in vitro pharmacological profile similar to native insulin, with significantly reduced potency and an extended time-action profile in vivo that supports once-weekly dosing in humans. SIGNIFICANCE STATEMENT: BIF is a novel basal insulin Fc-fusion protein designed for once-weekly dosing. In this study, we demonstrate that BIF has an in vitro pharmacological profile similar to human insulin, but with weaker potency across assays for IR binding and activity. BIF has a PD and PK profile in STZ-treated rats supportive of weekly dosing in humans.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Humans , Insulin/metabolism , Quality of Life , Rats , Streptozocin
4.
Sensors (Basel) ; 21(3)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535428

ABSTRACT

A new optical fiber sensor based on the fluorescence lifetime was prepared for specific detection of sulfate ion concentration, where 1,1'-(anthracene-9,10-diylbis(methylene))bis(3-(dodecylcarbamoyl)pyridin-1-ium) acted as the sulfate fluorescent probe. The probe was immobilized in a porous cellulose acetate membrane to form the sensitive membrane by the immersion precipitation method, and polyethylene glycol 400 acted as a porogen. The sensing principle was proven, as a sulfate ion could form a complex with the probe through a hydrogen bond, which led to structural changes and fluorescence for the probe. The signals of the fluorescence lifetime data were collected by the lock-in amplifier and converted into the phase delay to realize the detection of sulfate ions. Based on the phase-modulated fluorometry, the relationship between the phase delay of the probe and the sulfate ion concentration was described in the range from 2 to 10 mM. The specificity and response time of this optical fiber sensor were also researched.

5.
Nanotechnology ; 31(9): 095501, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31703221

ABSTRACT

For the early diagnosis of gastric cancer, microRNA-148a (miRNA-148a) as a promising biomarker is measured by a simple colorimetric biosensor due to its unique surface plasmon resonance (SPR) absorption of gold nanoparticles (AuNPs). In the assay system, the sensing probes are facilitated by the conjugation of AuNPs with RNA probes (RNAP) via Au-S bonds, which align in a tail-to-tail fashion onto the target RNA. When miRNA-148a is introduced, a sandwich hybridization reaction is triggered between the AuNP-RNAP conjugates and targets, resulting in changes in the SPR absorption band, microscopic distribution and macroscopic color of the AuNP solution. Following this principle, this colorimetric method is able to quantitatively detect miRNA-148a at nanomolar level with a limit of ∼1.9 nM, and exhibits high sensitivity and selectivity by a low-cost UV-vis spectrometer or even the naked eye. Moreover, the AuNP network materials with a characteristic sharp 'melting transition' provide significant guidance for the reusability of DNA or RNA biosensors.


Subject(s)
Biosensing Techniques/methods , Metal Nanoparticles/chemistry , MicroRNAs/analysis , RNA Probes/chemistry , Stomach Neoplasms/diagnosis , Biosensing Techniques/instrumentation , Colorimetry , Gold/chemistry , Humans , Surface Plasmon Resonance
6.
Sensors (Basel) ; 18(8)2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30096861

ABSTRACT

A novel "turn-on" fluorescent copper biosensor is developed successfully based on the graphene oxide (GO)-dsDNA-CdTe quantum dots (QDs) complex via chemical crosslink method. The optical and structure properties of GO-dsDNA-CdTe QDs complex are studied by fluorescence (FL) spectra and transmission electron microscopy (TEM) in detail. It is demonstrated that the fluorescence quenching of CdTe QDs is a process of fluorescence resonance energy transfer (FRET) due to the essential surface and quenching properties of two-dimensional GO. Copper ions induce the catalytic reaction of DNA chain and irreversibly break at the cleavage site, which will cause the G-quadruplex formation, moreover further result in the CdTe QDs separated from GO and restored its fluorescence. Therefore, a significant recovery effect on the fluorescence of the GO-dsDNA-CdTe QDs complex is observed in the presence of copper ions. The fluorescence responses are concentration-dependent and can be well described by a linear equation. Compared with other metal ions, the sensor performs good selectivity for copper ions.


Subject(s)
Biosensing Techniques , Copper/chemistry , DNA Cleavage , DNA/chemistry , Fluorescence , Graphite/chemistry , Quantum Dots , Cadmium Compounds/chemistry , Oxides/chemistry , Tellurium/chemistry
7.
Front Genet ; 15: 1392110, 2024.
Article in English | MEDLINE | ID: mdl-38784042

ABSTRACT

In this study, we investigate gynogenetic reproduction in Pengze Crucian Carp (Carassius auratus var. pengsenensis) using third-generation Nanopore sequencing to uncover structural variations (SVs) in offspring. Our objective was to understand the role of male genetic material in gynogenesis by examining the genomes of both parents and their offspring. We discovered a notable number of male-specific structural variations (MSSVs): 1,195 to 1,709 MSSVs in homologous offspring, accounting for approximately 0.52%-0.60% of their detected SVs, and 236 to 350 MSSVs in heterologous offspring, making up about 0.10%-0.13%. These results highlight the significant influence of male genetic material on the genetic composition of offspring, particularly in homologous pairs, challenging the traditional view of asexual reproduction. The gene annotation of MSSVs revealed their presence in critical gene regions, indicating potential functional impacts. Specifically, we found 5 MSSVs in the exonic regions of protein-coding genes in homologous offspring, suggesting possible direct effects on protein structure and function. Validation of an MSSV in the exonic region of the polyunsaturated fatty acid 5-lipoxygenase gene confirmed male genetic material transmission in some offspring. This study underscores the importance of further research on the genetic diversity and gynogenesis mechanisms, providing valuable insights for reproductive biology, aquaculture, and fostering innovation in biological research and aquaculture practices.

8.
Acta Pharm Sin B ; 14(9): 3931-3948, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39309509

ABSTRACT

Cholangiocarcinoma (CCA) is a bile duct malignancy with a dismal prognosis. This study systematically investigated the role of the ribosomal protein S6 (RPS6) gene, which is dependent in CCA. We found that RPS6 upregulation in CCA tissues was correlated with a poor prognosis. Functional investigations have shown that alterations in RPS6 expression, both gain- and loss-of function could affect the proliferation of CCA cells. In xenograft tumor models, RPS6 overexpression enhances tumorigenicity, whereas RPS6 silencing reduces it. Integration analysis using RNA-seq and proteomics elucidated downstream signaling pathways of RPS6 depletion by affecting the cell cycle, especially DNA replication. Immunoprecipitation followed by mass spectrometry has identified numerous spliceosome complex proteins associated with RPS6. Transcriptomic profiling revealed that RPS6 affects numerous alternative splicing (AS) events, and combined with RNA immunoprecipitation sequencing, revealed that minichromosome maintenance complex component 7 (MCM7) binds to RPS6, which regulates its AS and increases oncogenic activity in CCA. Targeting RPS6 with vivo phosphorodiamidate morpholino oligomer (V-PMO) significantly inhibited the growth of CCA cells, patient-derived organoids, and subcutaneous xenograft tumor. Taken together, the data demonstrate that RPS6 is an oncogenic regulator in CCA and that RPS6-V-PMO could be repositioned as a promising strategy for treating CCA.

9.
Biosensors (Basel) ; 13(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38131787

ABSTRACT

Enrofloxacin, a fluoroquinolone widely used in animal husbandry, presents environmental and human health hazards due to its stability and incomplete hydrolysis leading to residue accumulation. To address this concern, a highly sensitive aptamer biosensor utilizing a localized surface plasmon resonance (LSPR) sensing chip and microfluidic technology was developed for rapid enrofloxacin residue detection. AuNPs were prepared by the seed method and the AuNPs-Apt complexes were immobilized on the chip by the sulfhydryl groups modified on the end of the aptamer. The properties and morphologies of the sensing chip and AuNPs-Apt complexes were characterized by Fourier transform infrared spectroscopy (FTIR), UV-Vis spectrophotometer, and scanning electron microscope (SEM), respectively. The sensing chip was able to detect enrofloxacin in the range of 0.01-100 ng/mL with good linearity, and the relationship between the response of the sensing chip and the concentration was Δλ (nm) = 1.288log ConENR (ng/mL) + 5.245 (R2 = 0.99), with the limit of detection being 0.001 ng/mL. The anti-interference, repeatability, and selectivity of this sensing chip were studied in detail. Compared with other sensors, this novel aptamer biosensor based on AuNPs-Apt complexes is expected to achieve simple, stable, and economical application in the field of enrofloxacin detection.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Animals , Humans , Surface Plasmon Resonance/methods , Enrofloxacin , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Oligonucleotides
10.
Biosens Bioelectron ; 237: 115537, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37467534

ABSTRACT

A surface plasmon resonance (SPR) optical fiber sensor with multimode-coreless-multimode (MNM) structure was developed, which modified by L-glutamine-binding protein (QBP) for detection of L-glutamine (Gln). The QBP was immobilized on the surface of gold films by chemical cross-linking and exhibited a binding affinity for L-glutamine. The conformation of QBP can be changed from the "open" to the "closed", which led to a red-shift of the SPR peak when QBP bounded to L-glutamine. There was a good linear correlation between is a dependence of the SPR peak on and the concentration of L-glutamine concentration in the range 10-100 µM, with a sensitivity of 10.797nm/log10[Gln] for L-glutamine in the in vitro embryo culture (IVC) medium environment, and the limit of detection (LOD) is 1.187 µM. This QBP-modified MNM structure optical fiber SPR sensor provides a new idea for the developmental potential assessment of embryos in the process of in vitro embryo culture.


Subject(s)
Biosensing Techniques , Surface Plasmon Resonance , Optical Fibers , Glutamine , Fiber Optic Technology
11.
Appl Opt ; 51(24): 5845-9, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22907012

ABSTRACT

Based on fiber Bragg grating (FBG), an online monitoring system for the etching process of optical fiber in a hydrofluoric (HF) acid solution has been designed. The variation curves of the wavelength shifts of FBGs with etching time at three different temperatures have been obtained and analyzed theoretically. The results show that the etching process of optical fiber in HF acid solution can be understood by the variation of the wavelength shift of FBG with etching time. Finally, required tapered fiber tips can be made by controlling the etching velocity and the pulling velocity of optical fiber from the etching solution.


Subject(s)
Fiber Optic Technology/instrumentation , Optical Fibers , Algorithms , Equipment Design , Fiber Optic Technology/methods , Hydrofluoric Acid/chemistry , Models, Theoretical , Refractometry/instrumentation , Refractometry/methods , Temperature , Time Factors
12.
FEBS J ; 289(9): 2657-2671, 2022 05.
Article in English | MEDLINE | ID: mdl-34826178

ABSTRACT

Insulin receptor (IR) phosphorylation is critical for the assessment of the extent of IR agonism and nuances in the downstream signaling cascade. A thorough identification and monitoring of the phosphorylation events is important for understanding the process of insulin signaling transduction and regulation. Although IR phosphorylation has been studied extensively in the past decades, only a handful of phosphorylation sites can be identified by either traditional antibody-based assays or recent large-scale mass spectrometry-based phosphoproteomics approaches. In the present study, the most exhaustive assessment of the IR phosphorylation was conducted using nano-liquid chromatography-tandem mass spectrometry, in which 13 IR phosphorylation sites and 22 combinations thereof were analyzed. The kinetic analysis included Y965, Y972, S968/969, and S974/976 in the juxtamembrane region; Y1158, Y1162, and Y1163 in the kinase domain; and Y1328, Y1334, S1278, S1320, S1321, and T1348 in the C-terminal region. Employing two different receptor agonists (i.e. insulin and an IR peptide agonist), the data revealed contrasting phosphorylation kinetics across these sites with dynamics far more diverse than expected for known IR agonists. Notably, cell trafficking experiments revealed that the IR peptide agonist was incapable of inducing IR to the early endosome, which is probably linked to a difference in IR phosphorylation. The present study provides a powerful tool for investigating IR signaling and trafficking that will benefit the design of IR agonists with improved therapeutic utility.


Subject(s)
Insulin , Receptor, Insulin , Insulin/metabolism , Kinetics , Mass Spectrometry , Phosphorylation , Receptor, Insulin/metabolism
13.
Oncogene ; 41(22): 3162-3176, 2022 05.
Article in English | MEDLINE | ID: mdl-35501460

ABSTRACT

Posttranscriptional modifications in RNA have been considered to contribute to disease pathogenesis and tumor progression. NOL1/NOP2/Sun domain family member 2 (NSUN2) is an RNA methyltransferase that promotes tumor progression in several cancers. Pancreatic cancer relapse inevitably occurs even in cases where primary tumors have been successfully treated. Associations of cancer progression due to reprogramming of the cancer methyl-metabolome and the cancer genome have been noted, but the effect of base modifications, namely 5-methylcytosine (m5C), in the transcriptome remains unclear. Aberrant regulation of 5-methylcytosine turnover in cancer may affect posttranscriptional modifications in coding and noncoding RNAs in disease pathogenesis. Mutations in NSUN2 have been reported as drivers of neurodevelopmental disorders in mice, and upregulated expression of NSUN2 in tumors of the breast, bladder, and pancreas has been reported. In this study, we conducted mRNA whole transcriptomic bisulfite sequencing to categorize NSUN2 target sites in the mRNA of human pancreatic cancer cells. We identified a total of 2829 frequent m5C sites in mRNA from pancreatic cancer cells. A total of 90.9% (2572/2829) of these m5C sites were mapped to annotated genes in autosomes and sex chromosomes X and Y. Immunohistochemistry staining confirmed that the NSUN2 expression was significantly upregulated in cancer lesions in the LSL-KrasG12D/+;Trp53fl/fl;Pdx1-Cre (KPC) spontaneous pancreatic cancer mouse model induced by Pdx1-driven Cre/lox system expressing mutant KrasG12D and p53 deletion. The in vitro phenotypic analysis of NSUN2 knockdown showed mild effects on pancreatic cancer cell 2D/3D growth, morphology and gemcitabine sensitivity in the early phase of tumorigenesis, but cumulative changes after multiple cell doubling passages over time were required for these mutations to accumulate. Syngeneic transplantation of NSUN2-knockdown KPC cells via subcutaneous injection showed decreased stromal fibrosis and restored differentiation of ductal epithelium in vivo. SIGNIFICANCE: Transcriptome-wide mRNA bisulfite sequencing identified candidate m5C sites of mRNAs in human pancreatic cancer cells. NSUN2-mediated m5C mRNA metabolism was observed in a mouse model of pancreatic cancer. NSUN2 regulates cancer progression and epithelial differentiation via mRNA methylation.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , 5-Methylcytosine , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Humans , Methyltransferases/metabolism , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , RNA , RNA, Messenger/genetics , Sulfites , Pancreatic Neoplasms
14.
Opt Express ; 19(22): 21515-23, 2011 Oct 24.
Article in English | MEDLINE | ID: mdl-22109000

ABSTRACT

For fiber optical sensor made of tapered fiber tip, the effects of the geometrical parameters of tapered tip on two important factors have been investigated. One factor is the intensity of the evanescent wave into fluorescent layer through core-medium interface; the other is the intensity of fluorescence signal transmitted from fluorescent layer to measurement end. A dependence relation of the intensity of fluorescence signal transmitted from fluorescent layer to measurement end upon the geometrical parameters of tapered tip has been obtained. Theoretical results show that the intensity of the evanescent wave into fluorescent layer rises with the decrease of the end diameter of tapered tip, and the increase of the tip length; and the transmitted power of fluorescence signal increases linearly with the increase of the tip length due to the contribution of the side area of tapered tip.

15.
J Clin Invest ; 131(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-34003802

ABSTRACT

Tirzepatide (LY3298176), a dual GIP and GLP-1 receptor (GLP-1R) agonist, delivered superior glycemic control and weight loss compared with GLP-1R agonism in patients with type 2 diabetes. However, the mechanism by which tirzepatide improves efficacy and how GIP receptor (GIPR) agonism contributes is not fully understood. Here, we show that tirzepatide is an effective insulin sensitizer, improving insulin sensitivity in obese mice to a greater extent than GLP-1R agonism. To determine whether GIPR agonism contributes, we compared the effect of tirzepatide in obese WT and Glp-1r-null mice. In the absence of GLP-1R-induced weight loss, tirzepatide improved insulin sensitivity by enhancing glucose disposal in white adipose tissue (WAT). In support of this, a long-acting GIPR agonist (LAGIPRA) was found to enhance insulin sensitivity by augmenting glucose disposal in WAT. Interestingly, the effect of tirzepatide and LAGIPRA on insulin sensitivity was associated with reduced branched-chain amino acids (BCAAs) and ketoacids in the circulation. Insulin sensitization was associated with upregulation of genes associated with the catabolism of glucose, lipid, and BCAAs in brown adipose tissue. Together, our studies show that tirzepatide improved insulin sensitivity in a weight-dependent and -independent manner. These results highlight how GIPR agonism contributes to the therapeutic profile of dual-receptor agonism, offering mechanistic insights into the clinical efficacy of tirzepatide.


Subject(s)
Adipose Tissue, White/metabolism , Gastric Inhibitory Polypeptide/pharmacology , Glucagon-Like Peptide-1 Receptor/agonists , Insulin Resistance , Obesity/metabolism , Adipose Tissue, White/pathology , Amino Acids, Branched-Chain/genetics , Amino Acids, Branched-Chain/metabolism , Animals , Body Weight/drug effects , Body Weight/genetics , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , Mice , Mice, Knockout , Obesity/drug therapy , Obesity/genetics , Obesity/pathology
16.
Am J Physiol Endocrinol Metab ; 298(1): E28-37, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19843873

ABSTRACT

The nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma plays a key role in regulating whole body glucose homeostasis and insulin sensitivity. Although it is expressed most highly in adipose, it is also present at lower levels in many tissues, including skeletal muscle. The role muscle PPARgamma plays in metabolic regulation and in mediating the antidiabetic effects of the thiazolidinediones is not understood. The goal of this work was to examine the molecular and physiological effects of PPARgamma activation in muscle cells. We found that pharmacological activation of PPARgamma in primary cultured myocytes, and genetic activation of muscle PPARgamma in muscle tissue of transgenic mice, induced the production of adiponectin directly from muscle cells. This muscle-produced adiponectin was functional and capable of stimulating adiponectin signaling in myocytes. In addition, elevated skeletal muscle PPARgamma activity in transgenic mice provided a significant protection from high-fat diet-induced insulin resistance and associated changes in muscle phenotype, including reduced myocyte lipid content and an increase in the proportion of oxidative muscle fiber types. Our findings demonstrate that PPARgamma activation in skeletal muscle can have a significant protective effect on whole body glucose homeostasis and insulin resistance and that myocytes can produce and secrete functional adiponectin in a PPARgamma-dependent manner. We propose that activation of PPARgamma in myocytes induces a local production of adiponectin that acts on muscle tissue to improve insulin sensitivity.


Subject(s)
Insulin Resistance/physiology , Muscle, Skeletal/physiology , PPAR gamma/genetics , PPAR gamma/metabolism , Adiponectin/genetics , Adiponectin/metabolism , Animals , Autocrine Communication/physiology , Blood Glucose/metabolism , Cells, Cultured , Dietary Fats/pharmacology , Gene Expression/physiology , Homeostasis/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/physiology , Mutagenesis, Site-Directed , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Phenotype , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/physiology
17.
Biotechnol Lett ; 32(6): 817-21, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20155486

ABSTRACT

Glucose oxidase (GOD) was covalently immobilized onto Fe(3)O(4)/SiO(2) magnetic nanoparticles (FSMNs) using glutaraldehyde (GA). Optimal immobilization was at pH 6 with 3-aminopropyltriethoxysilane at 2% (v/v), GA at 3% (v/v) and 0.143 g GOD per g carrier. The activity of immobilized GOD was 4,570 U/g at pH 7 and 50 degrees C. The immobilized GOD retained 80% of its initial activity after 6 h at 45 degrees C while free enzyme retained only 20% activity. The immobilized GOD maintained 60% of its initial activity after 6 cycles of repeated use and retained 75% of its initial activity after 1 month at 4 degrees C whereas free enzymes retained 62% of its activity.


Subject(s)
Biotechnology/methods , Enzymes, Immobilized/metabolism , Glucose Oxidase/metabolism , Nanoparticles/chemistry , Enzyme Stability , Enzymes, Immobilized/chemistry , Ferrosoferric Oxide , Glucose Oxidase/chemistry , Hydrogen-Ion Concentration , Protein Binding , Silicon Dioxide , Temperature
18.
Mater Sci Eng C Mater Biol Appl ; 107: 110329, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31761178

ABSTRACT

A label-free glucose biosensor is constructed successfully based on the long period fiber grating (LPFG) functionalized with graphene oxide (GO)-glucose oxidase (GOD) via the chemical crosslink method. GO coated on the surface of LPFG can immobilize GOD by the plentiful binding sites because of its favorable combination of exceptionally high surface-to-volume ratio. The structure and characterization of GOD-GO-modified LPFG are studied by the optical microscope, Fourier transformation infrared spectrometer (FTIR), Raman spectroscopy, scanning electron microscope (SEM) and atomic force microscopy (AFM), respectively. The reaction between GOD and glucose create gluconic acid and H2O2, which will lead to an evident shift of LPFG transmission spectrum due to the greater change of the surrounding refractive index (SRI). The GOD-GO-modified LPFG sensor shows a linear response with a response coefficient of 0.77 nm/(mg/mL). This biosensor has good selectivity and can be used for the detection of practical sample. The GOD-GO-modified LPFG biosensor has great prospect in the pharmaceutical research and medical diagnosis fields.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Glucose/analysis , Graphite/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Equipment Design , Gluconates/chemistry , Glucose/chemistry , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Optical Fibers , Refractometry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Time Factors
19.
Clin Epigenetics ; 12(1): 87, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32552862

ABSTRACT

BACKGROUND: Cancer subtype switching, which involves unclear cancer cell origin, cell fate decision, and transdifferentiation of cells within a confined tumor microenvironment, remains a major problem in pancreatic cancer (PDA). RESULTS: By analyzing PDA subtypes in The Cancer Genome Atlas, we identified that epigenetic silencing of apoptosis-associated tyrosine kinase (AATK) inversely was correlated with mRNA expression and was enriched in the quasi-mesenchymal cancer subtype. By comparing early mouse pancreatic lesions, the non-invasive regions showed AATK co-expression in cells with acinar-to-ductal metaplasia, nuclear VAV1 localization, and cell cycle suppression; but the invasive lesions conversely revealed diminished AATK expression in those with poorly differentiated histology, cytosolic VAV1 localization, and co-expression of p63 and HNF1α. Transiently activated AATK initiates acinar differentiation into a ductal cell fate to establish apical-basal polarization in acinar-to-ductal metaplasia. Silenced AATK and ectopically expressed p63 and HNF1α allow the proliferation of ductal PanINs in mice. CONCLUSION: Epigenetic silencing of AATK regulates the cellular transdifferentiation, proliferation, and cell cycle progression in converting PDA-subtypes.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Epigenesis, Genetic/genetics , Metaplasia/genetics , Pancreatic Neoplasms/genetics , Protein-Tyrosine Kinases/genetics , Aged , Animals , Cell Differentiation , DNA Methylation/genetics , Disease Models, Animal , Female , Gene Silencing , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Metaplasia/diagnosis , Mice , Middle Aged , Pancreatic Neoplasms/pathology , Pregnancy , Proto-Oncogene Proteins c-vav/genetics , RNA, Messenger/genetics , Trans-Activators/genetics , Tumor Microenvironment/genetics
20.
ACS Appl Mater Interfaces ; 11(43): 40868-40874, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31593428

ABSTRACT

An ultrasensitive nitric oxide (NO) gas sensor based on the graphene oxide (GO)-coated long-period fiber grating (LPFG) was constructed successfully because of its excellent sensitivity to the surrounding refractive index (SRI) change. The surface morphology and structure of GO coated on LPFG were characterized by the scanning electron microscope (SEM), scanning probe microscope (SPM), and Raman spectroscopy, respectively. The adsorption principle of NO molecules by GO was calculated in detail by density functional theory (DFT) and further characterized by Fourier transform infrared spectrometry (FT-TR) and X-ray photoelectron spectroscopy (XPS). Our studies demonstrate that the adsorption principle of NO molecules by GO was the combined effect of physical adsorption and chemical adsorption because of the formation of C-N bonds between GO and NO and the oxidization of NO to NO2. The NO sensor exhibits excellent sensing performance in the NO concentration range of 0 to 400 ppm.

SELECTION OF CITATIONS
SEARCH DETAIL