Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Immunol ; 25(1): 102-116, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38012418

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapies have successfully treated hematological malignancies. Macrophages have also gained attention as an immunotherapy owing to their immunomodulatory capacity and ability to infiltrate solid tumors and phagocytize tumor cells. The first-generation CD3ζ-based CAR-macrophages could phagocytose tumor cells in an antigen-dependent manner. Here we engineered induced pluripotent stem cell-derived macrophages (iMACs) with toll-like receptor 4 intracellular toll/IL-1R (TIR) domain-containing CARs resulting in a markedly enhanced antitumor effect over first-generation CAR-macrophages. Moreover, the design of a tandem CD3ζ-TIR dual signaling CAR endows iMACs with both target engulfment capacity and antigen-dependent M1 polarization and M2 resistance in a nuclear factor kappa B (NF-κB)-dependent manner, as well as the capacity to modulate the tumor microenvironment. We also outline a mechanism of tumor cell elimination by CAR-induced efferocytosis against tumor cell apoptotic bodies. Taken together, we provide a second-generation CAR-iMAC with an ability for orthogonal phagocytosis and polarization and superior antitumor functions in treating solid tumors relative to first-generation CAR-macrophages.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Antigen, T-Cell , T-Lymphocytes , Cell Line, Tumor , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Macrophages/pathology , Tumor Microenvironment
3.
Nat Commun ; 13(1): 4334, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882880

ABSTRACT

The success of chimeric antigen receptor (CAR) T cells in treating B cell malignancies comes at the price of eradicating normal B cells. Even though T cell malignancies are aggressive and treatment options are limited, similar strategies for T cell malignancies are constrained by the severe immune suppression arising from bystander T cell aplasia. Here, we show the selective killing of malignant T cells without affecting normal T cell-mediated immune responses in vitro and in a mouse model of disseminated leukemia. Further, we develop a CAR construct that carries the single chain variable fragment of a subtype-specific antibody against the variable TCR ß-chain region. We demonstrate that these anti-Vß8 CAR-T cells are able to recognize and kill all Vß8+ malignant T cells that arise from clonal expansion while sparing malignant or healthy Vß8- T cells, allowing sufficient T cell-mediated cellular immunity. In summary, we present a proof of concept for a selective CAR-T cell therapy to eradicate T cell malignancies while maintaining functional adaptive immunity, which opens the possibility for clinical development.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Animals , Immunotherapy, Adoptive , Mice , Neoplasms/pathology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL