ABSTRACT
OBJECTIVE: To study the clinical characteristics of whooping cough in neonates and the antimicrobial resistance of the bacterial isolates. METHODS: Clinical information of 7 neonates with whooping cough confirmed by bacterial culture was collected. The antimirobial resistance of the isolates was tested using E-test and disk diffusion methods. RESULTS: The children′s mothers or other family members had cough for more than 10 days in 6 neonates, in which four neonates contacted with 3 or more family members with cough. All the neonates had rhinobyon and slight cough at the beginning of the disease. Five cases presented typical spasmodic cough after 4-7 days of the onset. Five cases displayed cyanosis, four cases occurred apnea, three cases suffered breath holding, and only two cases had fever. Nares flaring and three depression signs were found in the physical examination. No bacteriostatic ring around the erythromycin disks were found for five bacterial isolates. The minimal inhibitory concentration (MIC) for erythromycin, azithromycin, clarithromycin and clindamycin were all >256 mg/L against the five isolates. CONCLUSIONS: Whooping cough should be considered for neonates with respiratory symptoms and a history of close contact with respiratory infection patients. Macrolide-resistant Bordetella pertussis is common in children with whooping cough.
Subject(s)
Bordetella pertussis/drug effects , Whooping Cough/complications , Drug Resistance, Bacterial , Female , Humans , Infant, Newborn , Male , Whooping Cough/microbiologyABSTRACT
Microbial proteins have recently been found to have more benefits in clinical disease treatment because of their better-developed strategy and properties than traditional medicine. In this study, we investigated the effectiveness of a truncated peptide synthesized from the C-terminal sequence of pneumolysin, i.e., C70PLY4, in Streptococcus pneumoniae, in treating chronic inflammatory conditions. It has been shown that C70PLY4 significantly blocks the transendothelial migration of neutrophils and attenuates the formation of atherosclerotic plaque and the secretion of soluble forms of the intercellular adhesion molecule-1 (ICAM-1), the vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in high-fat-diet/streptozotocin-induced inflammatory rats. The mechanism and the docking simulation analysis further indicated that C70PLY4 might serve as a Toll-like receptor 4 (TLR4) antagonist by competing for the binding site of MD2, an indispensable protein for lipopolysaccharide (LPS)-TLR4 interaction signaling, on the TLR4 structure. Moreover, compared to the full-length PLY, C70PLY4 seems to have no cytotoxicity in human vascular endothelial cells. Our study elucidated a possible therapeutic efficacy of C70PLY4 in reducing chronic inflammatory conditions and clarified the underlying mechanism. Thus, our findings identify a new drug candidate that, by blocking TLR4 activity, could be an effective treatment for patients with chronic inflammatory diseases.