Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 435
Filter
Add more filters

Publication year range
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38581416

ABSTRACT

The inference of gene regulatory networks (GRNs) from gene expression profiles has been a key issue in systems biology, prompting many researchers to develop diverse computational methods. However, most of these methods do not reconstruct directed GRNs with regulatory types because of the lack of benchmark datasets or defects in the computational methods. Here, we collect benchmark datasets and propose a deep learning-based model, DeepFGRN, for reconstructing fine gene regulatory networks (FGRNs) with both regulation types and directions. In addition, the GRNs of real species are always large graphs with direction and high sparsity, which impede the advancement of GRN inference. Therefore, DeepFGRN builds a node bidirectional representation module to capture the directed graph embedding representation of the GRN. Specifically, the source and target generators are designed to learn the low-dimensional dense embedding of the source and target neighbors of a gene, respectively. An adversarial learning strategy is applied to iteratively learn the real neighbors of each gene. In addition, because the expression profiles of genes with regulatory associations are correlative, a correlation analysis module is designed. Specifically, this module not only fully extracts gene expression features, but also captures the correlation between regulators and target genes. Experimental results show that DeepFGRN has a competitive capability for both GRN and FGRN inference. Potential biomarkers and therapeutic drugs for breast cancer, liver cancer, lung cancer and coronavirus disease 2019 are identified based on the candidate FGRNs, providing a possible opportunity to advance our knowledge of disease treatments.


Subject(s)
Gene Regulatory Networks , Liver Neoplasms , Humans , Systems Biology/methods , Transcriptome , Algorithms , Computational Biology/methods
2.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37861174

ABSTRACT

Antiviral peptides (AVPs) are widely found in animals and plants, with high specificity and strong sensitivity to drug-resistant viruses. However, due to the great heterogeneity of different viruses, most of the AVPs have specific antiviral activities. Therefore, it is necessary to identify the specific activities of AVPs on virus types. Most existing studies only identify AVPs, with only a few studies identifying subclasses by training multiple binary classifiers. We develop a two-stage prediction tool named FFMAVP that can simultaneously predict AVPs and their subclasses. In the first stage, we identify whether a peptide is AVP or not. In the second stage, we predict the six virus families and eight species specifically targeted by AVPs based on two multiclass tasks. Specifically, the feature extraction module in the two-stage task of FFMAVP adopts the same neural network structure, in which one branch extracts features based on amino acid feature descriptors and the other branch extracts sequence features. Then, the two types of features are fused for the following task. Considering the correlation between the two tasks of the second stage, a multitask learning model is constructed to improve the effectiveness of the two multiclass tasks. In addition, to improve the effectiveness of the second stage, the network parameters trained through the first-stage data are used to initialize the network parameters in the second stage. As a demonstration, the cross-validation results, independent test results and visualization results show that FFMAVP achieves great advantages in both stages.


Subject(s)
Algorithms , Peptides , Peptides/chemistry , Neural Networks, Computer , Machine Learning , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
3.
J Cogn Neurosci ; 36(5): 815-827, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38319683

ABSTRACT

Adaptive behavior relies on the selection and prioritization of relevant sensory inputs from the external environment as well as from among internal sensory representations held in working memory. Recent behavioral evidence suggests that the classic distinction between voluntary (goal-driven) and involuntary (stimulus-driven) influences over attentional allocation also applies to the selection of internal representations held in working memory. In the current EEG study, we set out to investigate the neural dynamics associated with the competition between voluntary and involuntary control over the focus of attention in visual working memory. We show that when voluntary and involuntary factors compete for the internal focus of attention, prioritization of the appropriate item is delayed-as reflected both in delayed gaze biases that track internal selection and in delayed neural beta (15-25 Hz) dynamics that track the planning for the upcoming memory-guided manual action. We further show how this competition is paralleled-possibly resolved-by an increase in frontal midline theta (4-8 Hz) activity that, moreover, predicts the speed of ensuing memory-guided behavior. Finally, because theta increased following retrocues that effectively reduced working-memory load, our data unveil how frontal theta activity during internal attentional focusing tracks demands on cognitive control over and above working-memory load. Together, these data yield new insight into the neural dynamics that govern the focus of attention in visual working memory, and disentangle the contributions of frontal midline theta activity to the processes of control versus retention in working memory.


Subject(s)
Attention , Memory, Short-Term , Humans , Adaptation, Psychological , Motivation , Visual Perception
4.
J Org Chem ; 89(4): 2127-2137, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38270538

ABSTRACT

The hitherto unknown hexakis(halomethyl)-functionalized tribenzotriquinacenes (TBTQs) 9 and 10 were synthesized from the key 4b,8b,12b-tribromo-TBTQ derivative 6 by an improved route in 67% overall yield. Extension of the bowl-shaped framework of 9 or 10 by threefold condensation with propargylamine or 2-azidoethylamine afforded the corresponding TBTQ-trialkyne 11 and TBTQ-triazide 12, respectively. While attempts to construct bis-TBTQ cages, including homodimerization of 11 and heterocoupling of 11 with 12, were unsuccessful, triazide 12 was found to undergo threefold [3 + 2]-cycloaddition with 3-ethynylaniline and phloroglucinol tripropargyl ether under click chemistry conditions. The latter reaction enabled facile capping of the TBTQ bowl to give the novel cage compound 5 in 22% yield.

5.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791313

ABSTRACT

A low-energy hit, such as a slight fall from a bed, results in a bone fracture, especially in the hip, which is a life-threatening risk for the older adult and a heavy burden for the social economy. Patients with low-energy traumatic bone fractures usually suffer a higher level of bony catabolism accompanied by osteoporosis. Bone marrow-derived stem cells (BMSCs) are critical in osteogenesis, leading to metabolic homeostasis in the healthy bony microenvironment. However, whether the BMSCs derived from the patients who suffered osteoporosis and low-energy traumatic hip fractures preserve a sustained mesodermal differentiation capability, especially in osteogenesis, is yet to be explored in a clinical setting. Therefore, we aimed to collect BMSCs from clinical hip fracture patients with osteoporosis, followed by osteogenic differentiation comparison with BMSCs from healthy young donors. The CD markers identification, cytokines examination, and adipogenic differentiation were also evaluated. The data reveal that BMSCs collected from elderly osteoporotic patients secreted approximately 122.8 pg/mL interleukin 6 (IL-6) and 180.6 pg/mL vascular endothelial growth factor (VEGF), but no PDGF-BB, IL-1b, TGF-b1, IGF-1, or TNF-α secretion. The CD markers and osteogenic and adipogenic differentiation capability in BMSCs from these elderly osteoporotic patients and healthy young donors are equivalent and compliant with the standards defined by the International Society of Cell Therapy (ISCT). Collectively, our data suggest that the elderly osteoporotic patients-derived BMSCs hold equivalent differentiation and proliferation capability and intact surface markers identical to BMSCs collected from healthy youth and are available for clinical cell therapy.


Subject(s)
Cell Differentiation , Hip Fractures , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteoporosis/metabolism , Osteoporosis/pathology , Female , Aged , Hip Fractures/metabolism , Hip Fractures/pathology , Male , Aging , Cells, Cultured , Adult , Cytokines/metabolism , Middle Aged , Adipogenesis , Aged, 80 and over , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology
6.
Anal Chem ; 95(39): 14526-14532, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37733469

ABSTRACT

We present a portable imaging flow cytometer comprising a smartphone, a small-footprint optical framework, and a PDMS-based microfluidic device. Flow cytometric analysis is performed in a sheathless manner via elasto-inertial focusing with a custom-written Android program, integrating a graphical user interface (GUI) that provides a high degree of user control over image acquisition. The proposed system offers two different operational modes. First, "post-processing" mode enables particle/cell sizing at throughputs of up to 67 000 particles/s. Alternatively, "real-time" mode allows for integrated cell/particle classification with machine learning at throughputs of 100 particles/s. To showcase the efficacy of our platform, polystyrene particles are accurately enumerated within heterogeneous populations using the post-processing mode. In real-time mode, an open-source machine learning algorithm is deployed within a custom-developed Android application to classify samples containing cells of similar size but with different morphologies. The flow cytometer can extract high-resolution bright-field images with a spatial resolution <700 nm using the developed machine learning-based algorithm, achieving classification accuracies of 97% and 93% for Jurkat and EL4 cells, respectively. Our results confirm that the smartphone imaging flow cytometer (sIFC) is capable of both enumerating single particles in flow and identifying morphological features with high resolution and minimal hardware.


Subject(s)
Diagnostic Imaging , Smartphone , Flow Cytometry/methods , Algorithms , Single-Cell Analysis
7.
Bioconjug Chem ; 34(6): 988-993, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37216465

ABSTRACT

Macrocycles occupy chemical space "beyond the rule of five". They bridge traditional bioactive small molecule drugs and macromolecules and have the potential to modulate challenging targets such as PPI or proteases. Here we report an on-DNA macrocyclization reaction utilizing intramolecular benzimidazole formation. A 129-million-member macrocyclic library composed of a privileged benzimidazole core, a dipeptide sequence (natural or non-natural), and linkers of varying length and flexibility was designed and synthesized.


Subject(s)
Macrocyclic Compounds , Macrocyclic Compounds/chemistry , Gene Library , Cyclization , Benzimidazoles , DNA/chemistry
8.
Bioconjug Chem ; 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36961996

ABSTRACT

Carbohydrates are an important class of naturally active products and play vital roles in regulating various physiological activities. To meet the demand for carbohydrate-based libraries used for the identification of potential drug candidates for pharmaceutical-related targets, we developed a set of on-DNA protocols to construct the DNA-encoded glycoconjugates, including Seyferth-Gilbert homologation, anomeric azidation, and CuAAC cyclization. These on-DNA chemistries enable the generation and modification of DNA-linked glycosyl compounds with good conversions and broad substrate scope. Finally, three DNA-linked glycoconjugate libraries were successfully generated to demonstrate their applicability and feasibility in library preparation.

9.
BMC Cancer ; 23(1): 591, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365497

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) have significant tumor regulatory functions, and CAFs-derived exosomes (CAFs-Exo) released from CAFs play an important role in the progression of oral squamous cell carcinoma (OSCC). However, a lack of comprehensive molecular biological analysis leaves the regulatory mechanisms of CAFs-Exo in OSCC unclear. METHODS: We used platelet derived growth factor-BB (PDGF-BB) to induce the transformation of human oral mucosa fibroblast (hOMF) into CAFs, and extracted exosomes from the supernatant of CAFs and hOMF. We validated the effect of CAFs-Exo on tumor progression by exosomes co-culture with Cal-27 and tumor-forming in nude mice. The cellular and exosomal transcriptomes were sequenced, and immune regulatory genes were screened and validated using mRNA-miRNA interaction network analysis in combination with publicly available databases. RESULTS: The results showed that CAFs-Exo had a stronger ability to promote OSCC proliferation and was associated with immunosuppression. We discovered that the presence of immune-related genes in CAFs-Exo may regulate the expression of PIGR, CD81, UACA, and PTTG1IP in Cal-27 by analyzing CAFs-Exo sequencing data and publicly available TCGA data. This may account for the ability of CAFs-Exo to exert immunomodulation and promote OSCC proliferation. CONCLUSIONS: CAFs-Exo was found to be involved in tumor immune regulation through hsa-miR-139-5p, ACTR2 and EIF6, while PIGR, CD81, UACA and PTTG1IP may be potentially effective targets for the treatment of OSCC in the future.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Squamous Cell , Exosomes , Head and Neck Neoplasms , MicroRNAs , Mouth Neoplasms , Animals , Mice , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Cancer-Associated Fibroblasts/metabolism , Exosomes/genetics , Exosomes/metabolism , Mice, Nude , Cell Proliferation/genetics , Cell Line, Tumor , Mouth Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Head and Neck Neoplasms/pathology , Gene Expression Regulation, Neoplastic
10.
BMC Cancer ; 23(1): 844, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37684587

ABSTRACT

MOTIVATION: Ovarian cancer (OC) is a highly lethal gynecological malignancy. Extensive research has shown that OC cells undergo significant metabolic alterations during tumorigenesis. In this study, we aim to leverage these metabolic changes as potential biomarkers for assessing ovarian cancer. METHODS: A functional module-based approach was utilized to identify key gene expression pathways that distinguish different stages of ovarian cancer (OC) within a tissue biopsy cohort. This cohort consisted of control samples (n = 79), stage I/II samples (n = 280), and stage III/IV samples (n = 1016). To further explore these altered molecular pathways, minimal spanning tree (MST) analysis was applied, leading to the formulation of metabolic biomarker hypotheses for OC liquid biopsy. To validate, a multiple reaction monitoring (MRM) based quantitative LCMS/MS method was developed. This method allowed for the precise quantification of targeted metabolite biomarkers using an OC blood cohort comprising control samples (n = 464), benign samples (n = 3), and OC samples (n = 13). RESULTS: Eleven functional modules were identified as significant differentiators (false discovery rate, FDR < 0.05) between normal and early-stage, or early-stage and late-stage ovarian cancer (OC) tumor tissues. MST analysis revealed that the metabolic L-arginine/nitric oxide (L-ARG/NO) pathway was reprogrammed, and the modules related to "DNA replication" and "DNA repair and recombination" served as anchor modules connecting the other nine modules. Based on this analysis, symmetric dimethylarginine (SDMA) and arginine were proposed as potential liquid biopsy biomarkers for OC assessment. Our quantitative LCMS/MS analysis on our OC blood cohort provided direct evidence supporting the use of the SDMA-to-arginine ratio as a liquid biopsy panel to distinguish between normal and OC samples, with an area under the ROC curve (AUC) of 98.3%. CONCLUSION: Our comprehensive analysis of tissue genomics and blood quantitative LC/MSMS metabolic data shed light on the metabolic reprogramming underlying OC pathophysiology. These findings offer new insights into the potential diagnostic utility of the SDMA-to-arginine ratio for OC assessment. Further validation studies using adequately powered OC cohorts are warranted to fully establish the clinical effectiveness of this diagnostic test.


Subject(s)
Nitric Oxide , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Biopsy , Area Under Curve , Arginine
11.
Article in English | MEDLINE | ID: mdl-37022765

ABSTRACT

A novel species of the genus Limimaricola, designated ASW11-118T, was isolated from an intertidal sand sample of the Yellow Sea, PR China. Growth of strain ASW11-118T occurred at 10-40 °C (optimum, 28 °C), pH 5.5-8.5 (optimum, pH 7.5) and with 0.5-8.0 % (w/v) NaCl (optimum, 1.5%). Strain ASW11-118T has the highest 16S rRNA gene sequence similarity to Limimaricola cinnabarinus LL-001T (98.8%) and 98.6 % to Limimaricola hongkongensis DSM 17492T. Phylogenetic analysis based on genomic sequences indicated that strain ASW11-118T belongs to the genus Limimaricola. The genome size of strain ASW11-118T was 3.8 Mb and DNA G+C content was 67.8 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain ASW11-118T and other members of the genus Limimaricola were below 86.6 and 31.3 %, respectively. The predominant respiratory quinone was ubiquinone-10. The predominant cellular fatty acid was C18 : 1 ω7c. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine and one unknown aminolipid. On the basis of the data presented, strain ASW11-118T is considered to represent a novel species of the genus Limimaricola, for which the name Limimaricola litoreus sp. nov. is proposed. The type strain is ASW11-118T (=MCCC 1K05581T=KCTC 82494T).


Subject(s)
Phylogeny , Rhodobacteraceae , Sand , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sand/microbiology , Sequence Analysis, DNA , Ubiquinone/chemistry , Rhodobacteraceae/classification , Rhodobacteraceae/isolation & purification
12.
Analyst ; 148(20): 5152-5156, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37721048

ABSTRACT

A fluorescent sensor array has been developed based on conjugated polymers (CPs) having six different skeletons for the detection of tetracyclines (TCs), which are known as environmental pollutants. CPs were synthesized from confined nanoreactors in a controlled manner. The fluorescent response occurs through the fluorescence resonance energy transfer (FRET) effect. By utilizing linear discriminant analysis (LDA), effective differentiation of TCs was accomplished with a very low detection concentration (66 nM). Moreover, the sensor array exhibited a highly sensitive ability to quantitatively distinguish different concentrations of TCs. Finally, the sensor array's potential for detecting TCs in aqueous solutions has been successfully demonstrated, widening its applications in practical environments. With simple preparation process, a low cost of detection and high sensitivity, the experimental results indicate that the CP-based sensor array is a promising platform for the sensitive and quantitative detection of TCs, and provides a good reference for future scientific research.

13.
J Appl Microbiol ; 134(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36597783

ABSTRACT

Acinetobacter baumannii is a strictly aerobic, nonmotile, nonfermenting, gram-negative bacillus. It is a highly infectious and invasive pathogen with high mortality and morbidity rates among immunodeficient patients. Due to increasing levels of drug resistance and the inefficiency of existing antimicrobial treatments, it is crucial to develop novel agents to control this pathogen. Several recent studies have investigated virulence factors that are associated with the pathogenesis of A. baumannii, and could thus serve as novel therapeutic targets. The present review comprehensively summarizes the current understanding of these virulence factors and their mechanisms in A. baumannii. We also highlight factors that could be potential therapeutic targets, as well as list candidate virulence factors for future researchers and clinical practitioners.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Anti-Infective Agents , Humans , Virulence Factors/genetics , Virulence , Acinetobacter Infections/drug therapy , Anti-Infective Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial
14.
BMC Pulm Med ; 23(1): 377, 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37805451

ABSTRACT

PURPOSE: The new grading system for invasive nonmucinous lung adenocarcinoma (LUAD) in the 2021 World Health Organization Classification of Thoracic Tumors was based on a combination of histologically predominant subtypes and high-grade components. In this study, a model for the pretreatment prediction of grade 3 tumors was established according to new grading standards. METHODS: We retrospectively collected 399 cases of clinical stage I (cStage-I) LUAD surgically treated in Tianjin Chest Hospital from 2015 to 2018 as the training cohort. Besides, the validation cohort consists of 216 patients who were collected from 2019 to 2020. These patients were also diagnosed with clinical cStage-I LUAD and underwent surgical treatment at Tianjin Chest Hospital. Univariable and multivariable logistic regression analyses were used to select independent risk factors for grade 3 adenocarcinomas in the training cohort. The nomogram prediction model of grade 3 tumors was established by R software. RESULTS: In the training cohort, there were 155 grade 3 tumors (38.85%), the recurrence-free survival of which in the lobectomy subgroup was better than that in the sublobectomy subgroup (P = 0.034). After univariable and multivariable analysis, four predictors including consolidation-to-tumor ratio, CEA level, lobulation, and smoking history were incorporated into the model. A nomogram was established and internally validated by bootstrapping. The Hosmer-Lemeshow test result was χ2 = 7.052 (P = 0.531). The C-index and area under the receiver operating characteristic curve were 0.708 (95% CI: 0.6563-0.7586) for the training cohort and 0.713 (95% CI: 0.6426-0.7839) for the external validation cohort. CONCLUSIONS: The nomogram prediction model of grade 3 LUAD was well fitted and can be used to assist in surgical or adjuvant treatment decision-making.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Humans , Retrospective Studies , Prognosis , Adenocarcinoma of Lung/surgery , Adenocarcinoma/pathology
15.
World J Surg Oncol ; 21(1): 195, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37394469

ABSTRACT

BACKGROUND: The current accuracy of frozen section diagnosis of tumor spread through air spaces (STAS) in non-small cell lung cancer (NSCLC) is poor. However, the accuracy and prognostic value of STAS assessment on frozen sections in small-sized NSCLC (diameter ≤ 2 cm) is unknown. METHODS: Three hundred fifty-two patients with clinical stage I NSCLC (≤ 2 cm) were included, of which the paraffin sections and frozen sections were reviewed. The accuracy of STAS diagnosis in frozen sections was assessed using paraffin sections as the gold standard. The relationship between STAS on frozen sections and prognosis was assessed by the Kaplan-Meier method and log-rank tests. RESULTS: STAS on frozen sections in 58 of 352 patients could not be evaluated. In the other 294 patients, 36.39% (107/294) was STAS-positive on paraffin sections and 29.59% (87/294) on frozen sections. The accuracy of frozen section diagnosis of STAS was 74.14% (218/294), sensitivity was 55.14% (59/107), specificity was 85.02% (159/187) and agreement was moderate (K = 0.418). In subgroup analysis, the Kappa values for frozen section diagnosis of STAS in the consolidation-to-tumor ratio (CTR) ≤ 0.5 group and CTR > 0.5 group were 0.368, 0.415, respectively. In survival analysis, STAS-positive frozen sections were associated with worse recurrence-free survival in the CTR > 0.5 group (P < 0.05). CONCLUSIONS: The moderate accuracy and prognostic significance of frozen section diagnosis of STAS in clinical stage I NSCLC (≤ 2 cm in diameter; CTR > 0.5) suggests that frozen section assessment of STAS can be applied to the treatment strategy of small-sized NSCLC with CTR > 0.5.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/diagnosis , Lung Neoplasms/surgery , Frozen Sections , Paraffin , Neoplasm Invasiveness/pathology , Prognosis , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Retrospective Studies
16.
J Wound Care ; 32(12): 773-786, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38060413

ABSTRACT

OBJECTIVE: To investigate the efficacy and safety of autologous platelet-rich plasma (au-PRP) for diabetic foot ulcer (DFU) treatment. METHOD: We conducted database searches (MEDLINE, EMBASE, evidence-based medicine reviews: CENTRAL, PubMed, and Web of Science) and reference mining for randomised controlled trials from inception to 23 January 2022. Results were scrutinised, data were extracted and research quality was investigated by two independent authors. Primary outcome was the proportion of complete ulcer healing. Secondary outcomes included both the mean time to complete healing and the incidence of adverse events. Statistical analyses were performed in RevMan 5.4 (Cochrane, UK). Kaplan-Meier curves for time to complete healing were pooled in R software (version 4.1.2) (R Foundation, Austria). RESULTS: Of the 231 records identified, 17 studies with a total of 1303 participants (649 randomised to the au-PRP group and 654 to a standard of care (SOC) group) met the eligibility criteria and were included in our study. Compared with SOC, au-PRP appeared to promote the complete healing rate (odds ratio (OR): 2.11; 95% Confidence Interval: 1.55-2.86). Au-PRP also appeared to significantly shorten complete healing time (mean duration: -19.04 days; 95%CI: -20.46--17.61]). There was no significant difference on adverse events. Results were robust on sensitivity analyses. CONCLUSION: Based on the findings of this review and meta-analysis, Au-PRP is an effective and safe adjuvant therapy for DFUs.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Platelet-Rich Plasma , Humans , Diabetic Foot/therapy , Ulcer , Wound Healing , Incidence
17.
Sensors (Basel) ; 23(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37960438

ABSTRACT

Medical image segmentation plays a crucial role in clinical diagnosis, treatment planning, and disease monitoring. The automatic segmentation method based on deep learning has developed rapidly, with segmentation results comparable to clinical experts for large objects, but the segmentation accuracy for small objects is still unsatisfactory. Current segmentation methods based on deep learning find it difficult to extract multiple scale features of medical images, leading to an insufficient detection capability for smaller objects. In this paper, we propose a context feature fusion and attention mechanism based network for small target segmentation in medical images called CFANet. CFANet is based on U-Net structure, including the encoder and the decoder, and incorporates two key modules, context feature fusion (CFF) and effective channel spatial attention (ECSA), in order to improve segmentation performance. The CFF module utilizes contextual information from different scales to enhance the representation of small targets. By fusing multi-scale features, the network captures local and global contextual cues, which are critical for accurate segmentation. The ECSA module further enhances the network's ability to capture long-range dependencies by incorporating attention mechanisms at the spatial and channel levels, which allows the network to focus on information-rich regions while suppressing irrelevant or noisy features. Extensive experiments are conducted on four challenging medical image datasets, namely ADAM, LUNA16, Thoracic OAR, and WORD. Experimental results show that CFANet outperforms state-of-the-art methods in terms of segmentation accuracy and robustness. The proposed method achieves excellent performance in segmenting small targets in medical images, demonstrating its potential in various clinical applications.


Subject(s)
Cues , Image Processing, Computer-Assisted
18.
J Orthop Sci ; 28(5): 1105-1112, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35864029

ABSTRACT

BACKGROUND: This study aims to compare therapeutic effects of two methods in complicated subtrochanteric femur fractures surgery: intramedullary nail fixation assisted with lateral monocortical locking plate versus intramedullary nail fixation assisted with supplementary cables. METHODS: From June 2015 to June 2020, seventy-seven patients with complex subtrochanteric fractures (i.e., Seinsheimer's classification type IV or V) were included in this study. Thirty-six patients (plate group) were operated using the intramedullary nail fixation assisted by lateral monocortical locking plate, and forty-one patients (cable group) were using the intramedullary nail fixation assisted by cables. The clinical information and demographic results were collected and compared. RESULTS: Operation time of plate group was shorter than cable group and the Incisions length of plate group was longer. The fluoroscopy times were 22.8 ± 8.2 in plate group and 33.0 ± 9.0 in cable group (p < 0.01). Compared with the cable group, patients in plate group used less cerclage cables (p < 0.01). Patients in the plate group has less medial cortex displacement compared with the cable group. (p = 0.038). As for the angular difference of neck shaft angle between operated hip and uninjured hip, plate group has less difference compared with the cable group. Time to union was 14.2 ± 3.1 weeks in plate group which is shorter than the cable group (17.9 ± 4.8 weeks). In terms of follow up period, number of malunion, Harris hip score, walking ability and traumatic hip rating scale, no significant differences were detected. CONCLUSIONS: Our results suggest that using lateral monocortical plate as an auxiliary way may have a longer surgical incision and more intraoperative blood loss, however, the operation time is shorter, the fluoroscopy times is less, and the time to union is shorter. Intramedullary nail fixation assisted by lateral monocortical locking plate may be a new option for patients with complex subtrochanteric femur fractures.


Subject(s)
Fracture Fixation, Intramedullary , Hip Fractures , Humans , Retrospective Studies , Bone Nails , Fracture Fixation, Intramedullary/methods , Treatment Outcome , Hip Fractures/diagnostic imaging , Hip Fractures/surgery , Femur
19.
Chemistry ; 28(3): e202102979, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34750897

ABSTRACT

A catalytic heterogenous Suzuki polymerization method was developed by confining the Pd(II)-catalyzed cross coupling reactions to take place exclusively in the nanochannels of dendritic mesoporous silica nanoparticles. Conjugated polymers with various monomer combinations, including donor-acceptor structures, were obtained in high yields. The molecular weights of the obtained polymers were well controlled with narrow molecular weight distributions (PDI value down to 1.13). All the polymeric products were highly soluble in common organic solvents, granting them with high processability. All the features of this confined Suzuki polymerization method endow the conjugated polymers great potential in optoelectronic applications.

20.
Article in English | MEDLINE | ID: mdl-35156916

ABSTRACT

A Gram-negative, aerobic, non-flagellated and rod-shaped bacterium, strain ASW11-22T, was isolated from an intertidal sediment collected from a coastal area of Qingdao, PR China. The strain grew at 15-40 °C (optimum, 37 °C), at pH 6.0-9.0 (optimum, pH 7.0) and with 0.5-10 % (w/v) NaCl (optimum, 1.0 %). It hydrolysed gelatin and aesculin but did not reduce nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ASW11-22T belonged to the genus Celeribacter, showing the highest sequence similarity to the type strains of Celeribacter halophilus MCCC 1A06432T (98.20 %) and Celeribacter ethanolicus NH195T (97.84 %). The genomic DNA G+C content was 59.1 mol%. The major cellular fatty acid (>10 %) of the strain was summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and its main polar lipids were phosphatidylglycerol and one unidentified aminolipid. The sole respiratory quinone of strain ASW11-22T was ubiquinone-10. On the basis of the polyphasic evidence presented in this paper, strain ASW11-22T represents a novel Celeribacter species, for which the name Celeribacter litoreus sp. nov. is proposed. The type strain is ASW11-22T (=KCTC 82495T=MCCC 1K05584T).


Subject(s)
Alphaproteobacteria/classification , Geologic Sediments , Phylogeny , Seawater , Alphaproteobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Geologic Sediments/microbiology , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL