Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Proc Natl Acad Sci U S A ; 121(25): e2315670121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861604

ABSTRACT

Tuberculosis (TB) is the world's deadliest infectious disease, with over 1.5 million deaths and 10 million new cases reported anually. The causative organism Mycobacterium tuberculosis (Mtb) can take nearly 40 d to culture, a required step to determine the pathogen's antibiotic susceptibility. Both rapid identification and rapid antibiotic susceptibility testing of Mtb are essential for effective patient treatment and combating antimicrobial resistance. Here, we demonstrate a rapid, culture-free, and antibiotic incubation-free drug susceptibility test for TB using Raman spectroscopy and machine learning. We collect few-to-single-cell Raman spectra from over 25,000 cells of the Mtb complex strain Bacillus Calmette-Guérin (BCG) resistant to one of the four mainstay anti-TB drugs, isoniazid, rifampicin, moxifloxacin, and amikacin, as well as a pan-susceptible wildtype strain. By training a neural network on this data, we classify the antibiotic resistance profile of each strain, both on dried samples and on patient sputum samples. On dried samples, we achieve >98% resistant versus susceptible classification accuracy across all five BCG strains. In patient sputum samples, we achieve ~79% average classification accuracy. We develop a feature recognition algorithm in order to verify that our machine learning model is using biologically relevant spectral features to assess the resistance profiles of our mycobacterial strains. Finally, we demonstrate how this approach can be deployed in resource-limited settings by developing a low-cost, portable Raman microscope that costs <$5,000. We show how this instrument and our machine learning model enable combined microscopy and spectroscopy for accurate few-to-single-cell drug susceptibility testing of BCG.


Subject(s)
Antitubercular Agents , Machine Learning , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Mycobacterium tuberculosis/drug effects , Humans , Microbial Sensitivity Tests/methods , Antitubercular Agents/pharmacology , Drug Resistance, Bacterial , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis/drug therapy , Tuberculosis/microbiology , Isoniazid/pharmacology
2.
Proc Natl Acad Sci U S A ; 121(14): e2308247121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38551833

ABSTRACT

Diamond color centers have proven to be versatile quantum emitters and exquisite sensors of stress, temperature, electric and magnetic fields, and biochemical processes. Among color centers, the silicon-vacancy (SiV[Formula: see text]) defect exhibits high brightness, minimal phonon coupling, narrow optical linewidths, and high degrees of photon indistinguishability. Yet the creation of reliable and scalable SiV[Formula: see text]-based color centers has been hampered by heterogeneous emission, theorized to originate from surface imperfections, crystal lattice strain, defect symmetry, or other lattice impurities. Here, we advance high-resolution cryo-electron microscopy combined with cathodoluminescence spectroscopy and 4D scanning transmission electron microscopy (STEM) to elucidate the structural sources of heterogeneity in SiV[Formula: see text] emission from nanodiamond with sub-nanometer-scale resolution. Our diamond nanoparticles are grown directly on TEM membranes from molecular-level seedings, representing the natural formation conditions of color centers in diamond. We show that individual subcrystallites within a single nanodiamond exhibit distinct zero-phonon line (ZPL) energies and differences in brightness that can vary by 0.1 meV in energy and over 70% in brightness. These changes are correlated with the atomic-scale lattice structure. We find that ZPL blue-shifts result from tensile strain, while ZPL red shifts are due to compressive strain. We also find that distinct crystallites host distinct densities of SiV[Formula: see text] emitters and that grain boundaries impact SiV[Formula: see text] emission significantly. Finally, we interrogate nanodiamonds as small as 40 nm in diameter and show that these diamonds exhibit no spatial change to their ZPL energy. Our work provides a foundation for atomic-scale structure-emission correlation, e.g., of single atomic defects in a range of quantum and two-dimensional materials.

3.
Proc Natl Acad Sci U S A ; 120(3): e2217035120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36626548

ABSTRACT

Solvated electrons are powerful reducing agents capable of driving some of the most energetically expensive reduction reactions. Their generation under mild and sustainable conditions remains challenging though. Using near-ultraviolet irradiation under low-intensity one-photon conditions coupled with electrochemical and optical detection, we show that the yield of solvated electrons in water is increased more than 10 times for nanoparticle-decorated electrodes compared to smooth silver electrodes. Based on the simulations of electric fields and hot carrier distributions, we determine that hot electrons generated by plasmons are injected into water to form solvated electrons. Both yield enhancement and hot carrier production spectrally follow the plasmonic near-field. The ability to enhance solvated electron yields in a controlled manner by tailoring nanoparticle plasmons opens up a promising strategy for exploiting solvated electrons in chemical reactions.


Subject(s)
Electrons , Nanoparticles , Light , Ultraviolet Rays , Water
4.
Nat Mater ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589542

ABSTRACT

The development of many quantum optical technologies depends on the availability of single quantum emitters with near-perfect coherence. Systematic improvement is limited by a lack of understanding of the microscopic energy flow at the single-emitter level and ultrafast timescales. Here we utilize a combination of fluorescence correlation spectroscopy and ultrafast spectroscopy to capture the sample-averaged dynamics of defects with single-particle sensitivity. We employ this approach to study heterogeneous emitters in two-dimensional hexagonal boron nitride. From milliseconds to nanoseconds, the translational, shelving, rotational and antibunching features are disentangled in time, which quantifies the normalized two-photon emission quantum yield. Leveraging the femtosecond resolution of this technique, we visualize electron-phonon coupling and discover the acceleration of polaronic formation on multi-electron excitation. Corroborated with theory, this translates to the photon fidelity characterization of cascaded emission efficiency and decoherence time. Our work provides a framework for ultrafast spectroscopy in heterogeneous emitters, opening new avenues of extreme-scale characterization for quantum applications.

5.
Annu Rev Phys Chem ; 75(1): 509-534, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941525

ABSTRACT

The ability of nanophotonic cavities to confine and store light to nanoscale dimensions has important implications for enhancing molecular, excitonic, phononic, and plasmonic optical responses. Spectroscopic signatures of processes that are ordinarily exceedingly weak such as pure absorption and Raman scattering have been brought to the single-particle limit of detection, while new emergent polaritonic states of optical matter have been realized through coupling material and photonic cavity degrees of freedom across a wide range of experimentally accessible interaction strengths. In this review, we discuss both optical and electron beam spectroscopies of cavity-coupled material systems in weak, strong, and ultrastrong coupling regimes, providing a theoretical basis for understanding the physics inherent to each while highlighting recent experimental advances and exciting future directions.

6.
Chem Rev ; 123(23): 12757-12794, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37979189

ABSTRACT

Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.

7.
Nano Lett ; 24(8): 2611-2618, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38357869

ABSTRACT

Circularly polarized light (CPL) is a versatile tool to prepare chiral nanostructures, but the mechanism for inducing enantioselectivity is not well understood. This work shows that the energy and polarization of visible photons can initiate photodeposition at different sites on plasmonic nanocrystals. Here, CPL on achiral gold bipyramids (AuBPs) creates hot holes that oxidatively deposit PbO2 asymmetrically. We show for the first time that the location of PbO2 photodeposition and hence optical dissymmetry depends on the CPL wavelength. Specifically, 488 and 532 nm CPL induce PbO2 growth in the middle of AuBPs, whereas 660 nm CPL induces PbO2 growth at the tips. Our observations show that wavelength-dependent plasmonic field distributions are more important than surface lightning rod effects in localizing plasmon-mediated photochemistry. The largest optical dissymmetry occurs at excitation wavelengths between the transverse and longitudinal resonances of the AuBPs because higher-order modes are required to induce chiral electric fields.

8.
Nano Lett ; 23(4): 1355-1362, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36745385

ABSTRACT

Optical metasurfaces offer unprecedented flexibility in light wave manipulation but suffer weak resonant enhancement. Tackling this problem, we experimentally unveil a new phase gradient metasurface platform made entirely from individually addressable high quality factor (high-Q) silicon meta-atoms. Composed of pairs of nearly identical nanoblocks, these meta-atoms support dipolar-guided-mode resonances that, due to the controlled suppression of radiation loss, serve as highly sensitive phase pixels when placed above a mirror. A key novelty of this platform lies in the vanishingly small structural perturbations needed to produce universal phase fronts. Having fabricated elements with Q-factor ∼380 and spaced by λ/1.2, we achieve strong beam steering, up to 59% efficient, to angles 32.3°, 25.3°, and 20.9°, with variations in nanoantenna volume fractions across the metasurfaces of ≤2.6%, instead of >50% required by traditional versions. Aside from extreme sensitivity, the metasurfaces exhibit near-field intensity enhancement over 1000×. Taken together, these properties represent an exciting prospect for dynamic and nonlinear wave shaping.

9.
Nano Lett ; 23(6): 2065-2073, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36856600

ABSTRACT

Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing S. epidermidis, E. coli, and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogen:blood cell ratios <1. Our combined bioprinting and SERS platform could accelerate rapid, sensitive pathogen detection in clinical, environmental, and industrial settings.


Subject(s)
Bioprinting , Metal Nanoparticles , Spectrum Analysis, Raman/methods , Escherichia coli , Gold/chemistry , Staphylococcus epidermidis , Artificial Intelligence , Metal Nanoparticles/chemistry
10.
Nano Lett ; 23(13): 6124-6131, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37347949

ABSTRACT

Excitons in two-dimensional transition metal dichalcogenides have a valley degree of freedom that can be optically manipulated for quantum information processing. Here, we integrate MoS2 monolayers with achiral silicon disk array metasurfaces to enhance and control valley-specific absorption and emission. Through the coupling to the metasurface electric and magnetic Mie modes, the intensity and lifetime of the emission of neutral excitons, trions, and defect bound excitons can be enhanced and shortened, respectively, while the spectral shape can be modified. Additionally, the degree of polarization (DOP) of exciton and trion emission from the valley can be symmetrically enhanced at 100 K. The DOP increase is attributed to both the metasurface-enhanced chiral absorption of light and the metasurface-enhanced exciton emission from the Purcell effect. Combining Si-compatible photonic design with large-scale 2D materials integration, our work makes an important step toward on-chip valleytronic applications approaching room-temperature operation.

11.
Nano Lett ; 22(4): 1703-1709, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35112873

ABSTRACT

Dynamically reconfigurable metasurfaces promise compact and lightweight spatial light modulation for many applications, including LiDAR, AR/VR, and LiFi systems. Here, we design and computationally investigate high-quality-factor silicon-on-lithium niobate metasurfaces with electrically driven, independent control of its constituent nanobars for full phase tunability with high tuning efficiency. Free-space light couples to guided modes within each nanobar via periodic perturbations, generating quality factors exceeding 30,000 while maintaining a bar spacing of <λ/1.5. We achieve nearly 2π phase variation with an applied bias not exceeding ±25 V, maintaining a reflection efficiency above 91%. Using full-field simulations, we demonstrate a high-angle (51°) switchable beamsplitter with a diffracted efficiency of 93% and an angle-tunable beamsteerer, spanning 18-31°, with up to 86% efficiency, all using the same metasurface device. Our platform provides a foundation for highly efficient wavefront-shaping devices with a wide dynamic tuning range capable of generating nearly any transfer function.


Subject(s)
Electricity , Silicon , Niobium , Oxides
12.
Acc Chem Res ; 54(19): 3632-3642, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34492177

ABSTRACT

Nanoparticle photocatalysts are essential to processes ranging from chemical production and water purification to air filtration and surgical instrument sterilization. Photochemical reactions are generally mediated by the illumination of metallic and/or semiconducting nanomaterials, which provide the necessary optical absorption, electronic band structure, and surface faceting to drive molecular reactions. However, with reaction efficiency and selectivity dictated by atomic and molecular interactions, imaging and controlling photochemistry at the atomic scale are necessary to both understand reaction mechanisms and to improve nanomaterials for next-generation catalysts. Here, we describe how advances in plasmonics, combined with advances in electron microscopy, particularly optically coupled transmission electron microscopy (OTEM), can be used to image and control light-induced chemical transformations at the nanoscale. We focus on our group's research investigating the interaction between hydrogen gas and Pd nanoparticles, which presents an important model system for understanding both hydrogenation catalysis and hydrogen storage. The studies described in this Account primarily rely on an environmental transmission electron microscope, a tool capable of circumventing traditional TEM's high-vacuum requirements, outfitted with optical sources and detectors to couple light into and out of the microscope. First, we describe the H2 loading kinetics of individual Pd nanoparticles. When confined to sizes of less than ∼100 nm, single-crystalline Pd nanoparticles exhibit coherent phase transformations between the hydrogen-poor α-phase and hydrogen-rich ß-phase, as revealed through monitoring the bulk plasmon resonance with electron energy loss spectroscopy. Next, we describe how contrast imaging techniques, such as phase contrast STEM and displaced-aperture dark field, can be employed as real-time techniques to image phase transformations with 100 ms temporal resolution. Studies of multiply twinned Pd nanoparticles and high aspect ratio Pd nanorods demonstrate that internal strain and grain boundaries can lead to partial hydrogenation within individual nanoparticles. Finally, we describe how OTEM can be used to locally probe nanoparticle dynamics under optical excitation and in reactive chemical environments. Under illumination, multicomponent plasmonic photocatalysts consisting of a gold nanoparticle "antenna" and a Pd "reactor" show clear α-phase nucleation in regions close to electromagnetic "hot spots" when near plasmonic antennas. Importantly, these hot spots need not correspond to the traditionally active, energetically preferred sites of catalytic nanoparticles. Nonthermal effects imparted by plasmonic nanoparticles, including electromagnetic field enhancement and plasmon-derived hot carriers, are crucial to explaining the site selectivity observed in PdHx phase transformations under illumination. This Account demonstrates how light can contribute to selective chemical phenomena in plasmonic heterostructures, en route to sustainable, solar-driven chemical production.

13.
Nat Mater ; 19(5): 534-539, 2020 May.
Article in English | MEDLINE | ID: mdl-32094492

ABSTRACT

Defects in hexagonal boron nitride (hBN) exhibit high-brightness, room-temperature quantum emission, but their large spectral variability and unknown local structure challenge their technological utility. Here, we directly correlate hBN quantum emission with local strain using a combination of photoluminescence (PL), cathodoluminescence (CL) and nanobeam electron diffraction. Across 40 emitters, we observe zero phonon lines (ZPLs) in PL and CL ranging from 540 to 720 nm. CL mapping reveals that multiple defects and distinct defect species located within an optically diffraction-limited region can each contribute to the observed PL spectra. Local strain maps indicate that strain is not required to activate the emitters and is not solely responsible for the observed ZPL spectral range. Instead, at least four distinct defect classes are responsible for the observed emission range, and all four classes are stable upon both optical and electron illumination. Our results provide a foundation for future atomic-scale optical characterization of colour centres.

14.
Acc Chem Res ; 53(3): 588-598, 2020 03 17.
Article in English | MEDLINE | ID: mdl-31913015

ABSTRACT

Chirality in Nature can be found across all length scales, from the subatomic to the galactic. At the molecular scale, the spatial dissymmetry in the atomic arrangements of pairs of mirror-image molecules, known as enantiomers, gives rise to fascinating and often critical differences in chemical and physical properties. With increasing hierarchical complexity, protein function, cell communication, and organism health rely on enantioselective interactions between molecules with selective handedness. For example, neurodegenerative and neuropsychiatric disorders including Alzheimer's and Parkinson's diseases have been linked to distortion of chiral-molecular structure. Moreover, d-amino acids have become increasingly recognized as potential biomarkers, necessitating comprehensive analytical methods for diagnosis that are capable of distinguishing l- from d-forms and quantifying trace concentrations of d-amino acids. Correspondingly, many pharmaceuticals and agrochemicals consist of chiral molecules that target particular enantioselective pathways. Yet, despite the importance of molecular chirality, it remains challenging to sense and to separate chiral compounds. Chiral-optical spectroscopies are designed to analyze the purity of chiral samples, but they are often insensitive to the trace enantiomeric excess that might be present in a patient sample, such as blood, urine, or sputum, or pharmaceutical product. Similarly, existing separation schemes to enable enantiopure solutions of chiral products are inefficient or costly. Consequently, most pharmaceuticals or agrochemicals are sold as racemic mixtures, with reduced efficacy and potential deleterious impacts.Recent advances in nanophotonics lay the foundation toward highly sensitive and efficient chiral detection and separation methods. In this Account, we highlight our group's effort to leverage nanoscale chiral light-matter interactions to detect, characterize, and separate enantiomers, potentially down to the single molecule level. Notably, certain resonant nanostructures can significantly enhance circular dichroism for improved chiral sensing and spectroscopy as well as high-yield enantioselective photochemistry. We first describe how achiral metallic and dielectric nanostructures can be utilized to increase the local optical chirality density by engineering the coupling between electric and magnetic optical resonances. While plasmonic nanoparticles locally enhance the optical chirality density, high-index dielectric nanoparticles can enable large-volume and uniform-sign enhancements in the optical chirality density. By overlapping these electric and magnetic resonances, local chiral fields can be enhanced by several orders of magnitude. We show how these design rules can enable high-yield enantioselective photochemistry and project a 2000-fold improvement in the yield of a photoionization reaction. Next, we discuss how optical forces can enable selective manipulation and separation of enantiomers. We describe the design of low-power enantioselective optical tweezers with the ability to trap sub-10 nm dielectric particles. We also characterize their chiral-optical forces with high spatial and force resolution using combined optical and atomic force microscopy. These optical tweezers exhibit an enantioselective optical force contrast exceeding 10 pN, enabling selective attraction or repulsion of enantiomers based on the illumination polarization. Finally, we discuss future challenges and opportunities spanning fundamental research to technology translation. Disease detection in the clinic as well as pharmaceutical and agrochemical industrial applications requiring large-scale, high-throughput production will gain particular benefit from the simplicity and relative low cost that nanophotonic platforms promise.


Subject(s)
Nanoparticles , Photons , Amino Acids/chemistry , Circular Dichroism , Light , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Optical Tweezers , Stereoisomerism
15.
Phys Rev Lett ; 126(12): 123201, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33834794

ABSTRACT

The light sources that power photonic networks are small and scalable, but they also require the incorporation of optical isolators that allow light to pass in one direction only, protecting the light source from damaging backreflections. Unfortunately, the size and complex integration of optical isolators makes small-scale and densely integrated photonic networks infeasible. Here, we overcome this limitation by designing a single device that operates both as a coherent light source and as its own optical isolator. Our design relies on high-quality-factor dielectric metasurfaces that exhibit intrinsic chirality. By carefully manipulating the geometry of the constituent silicon metaatoms, we design three-dimensionally chiral modes that act as optical spin-dependent filters. Using spin-polarized Raman scattering together with our chiral metacavity, we demonstrate Raman lasing in the forward direction, while the lasing action is suppressed by over an order of magnitude for reflected light. Our high-Q chiral metasurface design presents a new approach toward compactly isolating integrated light sources by directly tailoring the emission properties of the light source itself.

16.
Nano Lett ; 20(7): 5127-5132, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32497434

ABSTRACT

Metasurface lenses provide an ultrathin platform in which to focus light, but weak light-matter interactions limit their dynamic tunability. Here we design submicron-thick, ultrahigh quality factor (high-Q) metalenses that enable dynamic modulation of the focal length and intensity. Using full-field simulations, we show that quality factors exceeding 5000 can be generated by including subtle, periodic perturbations within the constituent Si nanoantennas. Such high-Q resonances enable lens modulation based on the nonlinear Kerr effect, with focal lengths varying from 4 to 6.5 µm and focal intensities decreasing by half as input intensity increases from 0.1 to 1 mW/µm2. We also show how multiple high-Q resonances can be embedded in the lens response through judicious placement of the perturbations. Our high-Q lens design, with quality factors 2 orders of magnitude higher than existing lens designs, provides a foundation for reconfigurable, multiplexed, and hyperspectral metasurface imaging platforms.

17.
Nano Lett ; 20(10): 7655-7661, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32914987

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is a promising cellular identification and drug susceptibility testing platform, provided it can be performed in a controlled liquid environment that maintains cell viability. We investigate bacterial liquid-SERS, studying plasmonic and electrostatic interactions between gold nanorods and bacteria that enable uniformly enhanced SERS. We synthesize five nanorod sizes with longitudinal plasmon resonances ranging from 670 to 860 nm and characterize SERS signatures of Gram-negative Escherichia coli and Serratia marcescens and Gram-positive Staphylococcus aureus and Staphylococcus epidermidis bacteria in water. Varying the concentration of bacteria and nanorods, we achieve large-area SERS enhancement that is independent of nanorod resonance and bacteria type; however, bacteria with higher surface charge density exhibit significantly higher SERS signal. Using cryo-electron microscopy and zeta potential measurements, we show that the higher signal results from attraction between positively charged nanorods and negatively charged bacteria. Our robust liquid-SERS measurements provide a foundation for bacterial identification and drug testing in biological fluids.


Subject(s)
Mycobacterium tuberculosis , Spectrum Analysis, Raman , Cryoelectron Microscopy , Gold , Microbial Sensitivity Tests , Static Electricity
18.
J Am Chem Soc ; 142(43): 18304-18309, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33048539

ABSTRACT

Strong enhancement of molecular circular dichroism (CD) has the potential to enable efficient asymmetric photolysis, a method of chiral separation that has conventionally been impeded by insufficient yield and low enantiomeric excess. Here, we study experimentally how predicted enhancements in optical chirality density near resonant silicon nanodisks boost CD. We use fluorescence-detected circular dichroism (FDCD) spectroscopy to measure indirectly the differential absorption of circularly polarized light by a monolayer of optically active molecules functionalized to silicon nanodisk arrays. Importantly, the molecules and nanodisk antennas have spectrally coincident resonances, and our fluorescence technique allows us to deconvolute absorption in the nanodisks from the molecules. We find that enhanced FDCD signals depend on nanophotonic resonances, in good agreement with simulated differential absorption and optical chirality density, while no signal is detected from molecules adsorbed on featureless silicon surfaces. These results verify the potential of nanophotonic platforms to be used for asymmetric photolysis with lower energy requirements.

19.
J Chem Phys ; 152(24): 240902, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32610995

ABSTRACT

In a pandemic era, rapid infectious disease diagnosis is essential. Surface-enhanced Raman spectroscopy (SERS) promises sensitive and specific diagnosis including rapid point-of-care detection and drug susceptibility testing. SERS utilizes inelastic light scattering arising from the interaction of incident photons with molecular vibrations, enhanced by orders of magnitude with resonant metallic or dielectric nanostructures. While SERS provides a spectral fingerprint of the sample, clinical translation is lagged due to challenges in consistency of spectral enhancement, complexity in spectral interpretation, insufficient specificity and sensitivity, and inefficient workflow from patient sample collection to spectral acquisition. Here, we highlight the recent, complementary advances that address these shortcomings, including (1) design of label-free SERS substrates and data processing algorithms that improve spectral signal and interpretability, essential for broad pathogen screening assays; (2) development of new capture and affinity agents, such as aptamers and polymers, critical for determining the presence or absence of particular pathogens; and (3) microfluidic and bioprinting platforms for efficient clinical sample processing. We also describe the development of low-cost, point-of-care, optical SERS hardware. Our paper focuses on SERS for viral and bacterial detection, in hopes of accelerating infectious disease diagnosis, monitoring, and vaccine development. With advances in SERS substrates, machine learning, and microfluidics and bioprinting, the specificity, sensitivity, and speed of SERS can be readily translated from laboratory bench to patient bedside, accelerating point-of-care diagnosis, personalized medicine, and precision health.


Subject(s)
Biomarkers/analysis , Communicable Diseases/diagnosis , Spectrum Analysis, Raman/methods , Algorithms , Aptamers, Nucleotide/chemistry , Humans , Machine Learning , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Molecular Imprinting , Polymers/chemistry
20.
Nano Lett ; 19(6): 3878-3885, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31056918

ABSTRACT

The optical efficiency of lanthanide-based upconversion is intricately related to the crystalline host lattice. Different crystal fields interacting with the electron clouds of the lanthanides can significantly affect transition probabilities between the energy levels. Here, we investigate six distinct alkaline-earth rare-earth fluoride host materials (M1- xLn xF2+x, MLnF) for infrared-to-visible upconversion, focusing on nanoparticles of CaYF, CaLuF, SrYF, SrLuF, BaYF, and BaLuF doped with Yb3+ and Er3+. We first synthesize ∼5 nm upconverting cores of each material via a thermal decomposition method. Then we introduce a dropwise hot-injection method to grow optically inert MYF shell layers around the active cores. Five distinct shell thicknesses are considered for each host material, resulting in 36 unique, monodisperse upconverting nanomaterials each with size below ∼15 nm. The upconversion quantum yield (UCQY) is measured for all core/shell nanoparticles as a function of shell thickness and compared with hexagonal (ß-phase) NaGdF4, a traditional upconverting host lattice. While the UCQY of core nanoparticles is below the detection limit (<10-5%), it increases by 4 to 5 orders of magnitude as the shell thickness approaches 4-6 nm. The UCQY values of our cubic MLnF nanoparticles meet or exceed the ß-NaGdF4 reference sample. Across all core/shell samples, SrLuF nanoparticles are the most efficient, with UCQY values of 0.53% at 80 W/cm2 for cubic nanoparticles with ∼11 nm edge length. This efficiency is 5 times higher than our ß-NaGdF4 reference material with comparable core size and shell thickness. Our work demonstrates efficient and bright upconversion in ultrasmall alkaline-earth-based nanoparticles, with applications spanning biological imaging and optical sensing.

SELECTION OF CITATIONS
SEARCH DETAIL