Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters

Publication year range
1.
Mol Ecol ; 31(7): 2172-2188, 2022 04.
Article in English | MEDLINE | ID: mdl-35092102

ABSTRACT

Invertebrates are important for restoration processes as they are key drivers of many landscape-scale ecosystem functions; including pollination, nutrient cycling and soil formation. However, invertebrates are often overlooked in restoration monitoring because they are highly diverse, poorly described, and time-consuming to survey, and require increasingly scarce taxonomic expertise to enable identification. DNA metabarcoding is a relatively new tool for rapid survey that is able to address some of these concerns, and provide information about the taxa with which invertebrates are interacting via food webs and habitat. Here, we evaluate how invertebrate communities may be used to determine ecosystem trajectories during restoration. We collected ground-dwelling and airborne invertebrates across chronosequences of mine-site restoration in three ecologically disparate locations in Western Australia and identified invertebrate and plant communities using DNA metabarcoding. Ground-dwelling invertebrates showed the clearest restoration signals, with communities becoming more similar to reference communities over time. These patterns were weaker in airborne invertebrates, which have higher dispersal abilities and therefore less local fidelity to environmental conditions. Although we detected directional changes in community composition indicative of invertebrate recovery, patterns observed were inconsistent between study locations. The inclusion of plant assays allowed identification of plant species, as well as potential food sources and habitat. We demonstrate that DNA metabarcoding of invertebrate communities can be used to evaluate restoration trajectories. Testing and incorporating new monitoring techniques such as DNA metabarcoding is critical to improving restoration outcomes.


Subject(s)
DNA Barcoding, Taxonomic , Ecosystem , Animals , Biodiversity , DNA , Invertebrates/genetics , Plants/genetics
2.
Ann Bot ; 129(6): 669-678, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35247265

ABSTRACT

BACKGROUND AND AIMS: Many terrestrial orchids have an obligate dependence on their mycorrhizal associations for nutrient acquisition, particularly during germination and early seedling growth. Though important in plant growth and development, phosphorus (P) nutrition studies in mixotrophic orchids have been limited to only a few orchid species and their fungal symbionts. For the first time, we demonstrate the role of a range of fungi in the acquisition and transport of inorganic P to four phylogenetically distinct green-leaved terrestrial orchid species (Diuris magnifica, Disa bracteata, Pterostylis sanguinea and Microtis media subsp. media) that naturally grow in P-impoverished soils. METHODS: Mycorrhizal P uptake and transfer to orchids was determined and visualized using agar microcosms with a diffusion barrier between P source (33P orthophosphate) and orchid seedlings, allowing extramatrical hyphae to reach the source. KEY RESULTS: Extramatrical hyphae of the studied orchid species were effective in capturing and transporting inorganic P into the plant. Following 7 d of exposure, between 0.5 % (D. bracteata) and 47 % (D. magnifica) of the P supplied was transported to the plants (at rates between 0.001 and 0.097 fmol h-1). This experimental approach was capable of distinguishing species based on their P-foraging efficiency, and highlighted the role that fungi play in P nutrition during early seedling development. CONCLUSIONS: Our study shows that orchids occurring naturally on P-impoverished soils can obtain significant amounts of inorganic P from their mycorrhizal partners, and significantly more uptake of P supplied than previously shown in other green-leaved orchids. These results provide support for differences in mycorrhiza-mediated P acquisition between orchid species and fungal symbionts in green-leaved orchids at the seedling stage. The plant-fungus combinations of this study also provide evidence for plant-mediated niche differentiation occurring, with ecological implications in P-limited systems.


Subject(s)
Basidiomycota , Mycorrhizae , Orchidaceae , Orchidaceae/microbiology , Phosphorus , Seedlings/microbiology , Soil , Symbiosis
3.
Glob Chang Biol ; 27(7): 1328-1348, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33494123

ABSTRACT

Urgent solutions to global climate change are needed. Ambitious tree-planting initiatives, many already underway, aim to sequester enormous quantities of carbon to partly compensate for anthropogenic CO2 emissions, which are a major cause of rising global temperatures. However, tree planting that is poorly planned and executed could actually increase CO2 emissions and have long-term, deleterious impacts on biodiversity, landscapes and livelihoods. Here, we highlight the main environmental risks of large-scale tree planting and propose 10 golden rules, based on some of the most recent ecological research, to implement forest ecosystem restoration that maximizes rates of both carbon sequestration and biodiversity recovery while improving livelihoods. These are as follows: (1) Protect existing forest first; (2) Work together (involving all stakeholders); (3) Aim to maximize biodiversity recovery to meet multiple goals; (4) Select appropriate areas for restoration; (5) Use natural regeneration wherever possible; (6) Select species to maximize biodiversity; (7) Use resilient plant material (with appropriate genetic variability and provenance); (8) Plan ahead for infrastructure, capacity and seed supply; (9) Learn by doing (using an adaptive management approach); and (10) Make it pay (ensuring the economic sustainability of the project). We focus on the design of long-term strategies to tackle the climate and biodiversity crises and support livelihood needs. We emphasize the role of local communities as sources of indigenous knowledge, and the benefits they could derive from successful reforestation that restores ecosystem functioning and delivers a diverse range of forest products and services. While there is no simple and universal recipe for forest restoration, it is crucial to build upon the currently growing public and private interest in this topic, to ensure interventions provide effective, long-term carbon sinks and maximize benefits for biodiversity and people.


Subject(s)
Carbon Sequestration , Ecosystem , Biodiversity , Conservation of Natural Resources , Forests , Humans , Trees
4.
Ann Bot ; 128(7): 821-824, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34216211

ABSTRACT

BACKGROUND AND AIMS: Colour pattern is a key cue of bee attraction selectively driving the appeal of pollinators. It comprises the main colour of the flower with extra fine patterns, indicating a reward focal point such as nectar, nectaries, pollen, stamens and floral guides. Such advertising of floral traits guides visitation by the insects, ensuring precision in pollen gathering and deposition. The study, focused in the Southwest Australian Floristic Region, aimed to spot bee colour patterns that are usual and unusual, missing, accomplished by mimicry of pollen and anthers, and overlapping between mimic-model species in floral mimicry cases. METHODS: Floral colour patterns were examined by false colour photography in 55 flower species of multiple highly diverse natural plant communities in south-west Australia. False colour photography is a method to transform a UV photograph and a colour photograph into a false colour photograph based on the trichromatic vision of bees. This method is particularly effective for rapid screening of large numbers of flowers for the presence of fine-scale bee-sensitive structures and surface roughness that are not detectable using standard spectrophotometry. KEY RESULTS: Bee- and bird-pollinated flowers showed the expected but also some remarkable and unusual previously undetected floral colour pattern syndromes. Typical colour patterns include cases of pollen and flower mimicry and UV-absorbing targets. Among the atypical floral colour patterns are unusual white and UV-reflecting flowers of bee-pollinated plants, bicoloured floral guides, consistently occurring in Fabaceae spp., and flowers displaying a selective attractiveness to birds only. In the orchid genera (Diuris and Thelymitra) that employ floral mimicry of model species, we revealed a surprising mimicry phenomenon of anthers mimicked in turn by model species. CONCLUSION: The study demonstrates the applicability of 'bee view' colour imaging for deciphering pollinator cues in a biodiverse flora with potential to be applied to other eco regions. The technique provides an exciting opportunity for indexing floral traits on a biome scale to establish pollination drivers of ecological and evolutionary relevance.


Subject(s)
Orchidaceae , Pollination , Animals , Australia , Bees , Biodiversity , Color , Flowers , Photography
5.
Ecol Lett ; 23(12): 1733-1735, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32945104

ABSTRACT

Ant Forest, a mobile app developed by the monolithic Alibaba Group, is greening individuals' daily activities and transforming human capacity to reverse global environmental degradation. Over 500 million e-trees are being cultivated every day in China using Ant Forest, and over 122 million real trees have been planted over more than 112 000 ha of degraded land. Ant Forest showcases how internet technology innovation combined with digital financing and philanthropy is contributing to solving environmental issues while attracting and retaining customer loyalty. This powerful business model has the potential to spread to all manner of environmental outcomes.


Subject(s)
Planets , Trees , China , Ecosystem , Forests , Humans
6.
Oecologia ; 193(4): 843-855, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32816111

ABSTRACT

Plants that produce specialised cluster roots, which mobilise large quantities of poorly available nutrients such as phosphorus (P), can provide a benefit to neighbouring plants that produce roots in the cluster rhizosphere, as demonstrated previously in pot studies. To be effective, such roots must be present within the short time of peak cluster activity. We tested if this requirement is met, and quantified potential P benefits, in a hyperdiverse Mediterranean woodland of southwest Australia where cluster-rooted species are prominent. Using minirhizotrons, we monitored root dynamics during the wet season in the natural habitat. We found non-cluster roots intermingling with all 57 of the observed cluster roots of the studied tree species, Banksia attenuata. Almost all (95%) of these cases were observed in a high-moisture treatment simulating the 45-year average, but not present when we intercepted some of the rainfall. We estimate that cluster-root activity can increase P availability to intermingling roots to a theoretical maximum of 80% of total P in the studied soil. Due to their high P-remobilisation efficiency (89%), which results from P rapidly being relocated from cluster roots within the plant, senesced Banksia cluster roots are a negligible P source for other roots. We conclude that, rather than serving as a P source, it is the cluster-root activity, particularly the exudation of carboxylates, that may improve the coexistence of interacting species that are capable of root intermingling, thus potentially promoting species diversity in nutrient-poor habitats, and that this mechanism will be less effective in a drying climate.


Subject(s)
Phosphorus , Proteaceae , Australia , Plant Roots , Rhizosphere , Soil
7.
Int J Mol Sci ; 21(14)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708125

ABSTRACT

Carnivorous plants from the Lentibulariaceae form a variety of standard and novel vegetative organs and survive unfavorable environmental conditions. Within Genlisea, only G. tuberosa, from the Brazilian Cerrado, formed tubers, while Utricularia menziesii is the only member of the genus to form seasonally dormant tubers. We aimed to examine and compare the tuber structure of two taxonomically and phylogenetically divergent terrestrial carnivorous plants: Genlisea tuberosa and Utricularia menziesii. Additionally, we analyzed tubers of U. mannii. We constructed phylogenetic trees using chloroplast genes matK/trnK and rbcL and used studied characters for ancestral state reconstruction. All examined species contained mainly starch as histologically observable reserves. The ancestral state reconstruction showed that specialized organs such as turions evolved once and tubers at least 12 times from stolons in Lentibulariaceae. Different from other clades, tubers probably evolved from thick stolons for sect. Orchidioides and both structures are primarily water storage structures. In contrast to species from section Orchidioides, G. tuberosa, U. menziesii and U. mannii form starchy tubers. In G. tuberosa and U. menziesii, underground tubers provide a perennating bud bank that protects the species in their fire-prone and seasonally desiccating environments.


Subject(s)
Carnivorous Plant/anatomy & histology , Carnivorous Plant/genetics , Chloroplasts/genetics , Lamiales/genetics , Plant Tubers/anatomy & histology , Stress, Physiological/physiology , Carnivorous Plant/cytology , Carnivorous Plant/ultrastructure , Lamiales/anatomy & histology , Lamiales/cytology , Lamiales/ultrastructure , Microscopy, Electron, Scanning , Phylogeny , Plant Tubers/cytology , Plant Tubers/genetics , Plant Tubers/ultrastructure , Starch/metabolism , Stress, Physiological/genetics , Water/metabolism
8.
Ann Bot ; 124(1): 65-76, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31329814

ABSTRACT

BACKGROUND AND AIMS: Little is known about the evolutionary and ecological drivers of carnivory in plants, particularly for those terrestrial species that do not occur in typical swamp or bog habitats. The Mediterranean endemic Drosophyllum lusitanicum (Drosophyllaceae) is one of very few terrestrial carnivorous plant species outside of Australia to occur in seasonally dry, fire-prone habitats, and is thus an ecological rarity. Here we assess the nutritional benefits of prey capture for D. lusitanicum under differing levels of soil fertility in situ. METHODS: We measured the total nitrogen and stable nitrogen and carbon isotope ratios of D. lusitanicum leaves, neighbouring non-carnivorous plant leaves, and groups of insect prey in three populations in southern Spain. We calculated trophic enrichment (ε15N) and estimated the proportion of prey-derived nitrogen (%Nprey) in D. lusitanicum leaves, and related these factors to soil chemistry parameters measured at each site. KEY RESULTS: In all three populations studied, D. lusitanicum plants were significantly isotopically enriched compared with neighbouring non-carnivorous plants. We estimated that D. lusitanicum gain ~36 %Nprey at the Puerto de Gáliz site, ~54 %Nprey at the Sierra Carbonera site and ~75 %Nprey at the Montera del Torero site. Enrichment in N isotope (ε15N) differed considerably among sites; however, it was not found to be significantly related to log10(soil N), log10(soil P) or log10(soil K). CONCLUSIONS: Drosophyllum lusitanicum individuals gain a significant nutritional benefit from captured prey in their natural habitat, exhibiting proportions of prey-derived nitrogen that are similar to those recorded for carnivorous plants occurring in more mesic environments. This study adds to the growing body of literature confirming that carnivory is a highly beneficial nutritional strategy not only in mesic habitats but also in seasonally dry environments, and provides insights to inform conservation strategies for D. lusitanicum in situ.


Subject(s)
Carnivory , Wetlands , Animals , Australia , Plants , Spain
9.
Ann Bot ; 123(1): 95-106, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30052753

ABSTRACT

Background and Aims: Substantial evidence supports the hypothesis that morphophysiological dormancy (MPD) is the basal kind of seed dormancy in the angiosperms. However, only physiological dormancy (PD) is reported in seeds of the ANA-grade genus Nymphaea. The primary aim of this study was to determine the kind of dormancy in seeds of six species of Nymphaea from the wet-dry tropics of Australia. Methods: The effects of temperature, light and germination stimulants on germination were tested on multiple collections of seeds of N. immutabilis, N. lukei, N. macrosperma, N. ondinea, N. pubescens and N. violacea. Embryo growth prior to hypocotyl emergence was monitored. Key Results: Germination was generally <10 % after 28 d in control treatments. Germination percentage was highest at 30 or 35 °C for seeds exposed to light and treated with ethylene or in anoxic conditions in sealed vials of water, and it differed significantly between collections of N. lukei, N. macrosperma and N. violacea. Seeds of N. pubescens did not germinate under any of the conditions. Embryo growth (8-37 % in length) occurred before hypocotyl emergence (germination) in seeds of the five species that germinated. Conclusions: Fresh seeds were dormant, and the amount of pregermination embryo growth in seeds of N. lukei and N. immutabilis was relatively small, while in seeds of N. macrosperma, N. ondinea and N. violacea it was relatively large. Thus, seeds of N. lukei and N. immutabilis had PD and those of N. macrosperma, N. ondinea and N. violacea had MPD. Overall, we found that seeds in the most phylogenetically derived clades within Nymphaea have MPD, suggesting that PD is the most likely basal trait within the Nymphaeales. This study also highlights the broad range of dormancy types and germination strategies in the ANA-grade angiosperms.


Subject(s)
Nymphaea/anatomy & histology , Nymphaea/physiology , Plant Dormancy , Australia , Plant Dormancy/physiology , Seeds/anatomy & histology , Seeds/physiology , Species Specificity
10.
Can J Microbiol ; 65(3): 235-251, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30495976

ABSTRACT

We investigated the diversity and composition of bacterial communities in rhizospheric and non-rhizospheric bulk soils as well as root nodule bacterial communities of Vachellia pachyceras - the only native tree species existing in the Kuwait desert. Community fingerprinting comparisons and 16S rDNA sequence identifications were used for characterization of the bacterial population using specific primers. The bacterial characterization of soil samples revealed four major phyla: Acidobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. In situ (desert) samples of both rhizospheric and non-rhizospheric bulk soil were dominated by the bacterial phyla Firmicutes and Bacteroidetes, whereas the phylum Betaproteobacteria was present only in non-rhizospheric bulk soil. Ex situ (nursery growing condition) V. pachyceras resulted in restricted bacterial communities dominated by members of a single phylum, Bacteroidetes. Results indicated that the soil organic matter and rhizospheric environments might drive the bacterial community. Despite harsh climatic conditions, data demonstrated that V. pachyceras roots harbor endophytic bacterial populations. Our findings on bacterial community composition and structure have major significance for evaluating how Kuwait's extreme climatic conditions affect bacterial communities. The baseline data obtained in this study will be useful and assist in formulating strategies in ecological restoration programs, including the application of inoculation technologies.


Subject(s)
Bacteria/growth & development , Fabaceae/microbiology , Microbiota , Soil Microbiology , Bacteria/classification , Biodiversity , Climate , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Kuwait , RNA, Ribosomal, 16S/genetics , Rhizosphere , Trees
11.
Plant J ; 90(4): 808-818, 2017 May.
Article in English | MEDLINE | ID: mdl-28112435

ABSTRACT

The plastid genome of plants is the smallest and most gene-rich of the three genomes in each cell and the one generally present in the highest copy number. As a result, obtaining plastid DNA sequence is a particularly cost-effective way of discovering genetic information about a plant. Until recently, the sequence information gathered in this way was generally limited to small portions of the genome amplified by polymerase chain reaction, but recent advances in sequencing technology have stimulated a substantial rate of increase in the sequencing of complete plastid genomes. Within the last year, the number of complete plastid genomes accessible in public sequence repositories has exceeded 1000. This sudden flood of data raises numerous challenges in data analysis and interpretation, but also offers the keys to potential insights across large swathes of plant biology. We examine what has been learnt so far, what more could be learnt if we look at the data in the right way, and what we might gain from the tens of thousands more genome sequences that will surely arrive in the next few years. The most exciting new discoveries are likely to be made at the interdisciplinary interfaces between molecular biology and ecology.


Subject(s)
Genome, Plastid/genetics , Genomics/methods , Chloroplasts/genetics , DNA, Plant/genetics , Genome, Plant/genetics , Phylogeny
12.
J Exp Biol ; 221(Pt 7)2018 04 06.
Article in English | MEDLINE | ID: mdl-29444841

ABSTRACT

We explore a recent, innovative variation of closed-system respirometry for terrestrial organisms, whereby oxygen partial pressure (PO2 ) is repeatedly measured fluorometrically in a constant-volume chamber over multiple time points. We outline a protocol that aligns this technology with the broader literature on aerial respirometry, including the calculations required to accurately convert O2 depletion to metabolic rate (MR). We identify a series of assumptions, and sources of error associated with this technique, including thresholds where O2 depletion becomes limiting, that impart errors to the calculation and interpretation of MR. Using these adjusted calculations, we found that the resting MR of five species of angiosperm seeds ranged from 0.011 to 0.640 ml g-1 h-1, consistent with published seed MR values. This innovative methodology greatly expands the lower size limit of terrestrial organisms that can be measured, and offers the potential for measuring MR changes over time as a result of physiological processes of the organism.


Subject(s)
Basal Metabolism , Seeds/metabolism , Spirometry/methods , Acacia/metabolism , Australia , Fluorescence , Senna Plant/metabolism
13.
Ann Bot ; 122(6): 1061-1073, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30184161

ABSTRACT

Background and Aims: While there is increasing recognition of Batesian floral mimicry in plants, there are few confirmed cases where mimicry involves more than one model species. Here, we test for pollination by mimicry in Diuris (Orchidaceae), a genus hypothesized to attract pollinators via mimicry of a range of co-occurring pea plants (Faboideae). Methods: Observations of pollinator behaviour were made for Diuris brumalis using arrays of orchid flowers. An analysis of floral traits in the co-flowering community and spectral reflectance measurements were undertaken to test if Di. brumalis and the pea plants showed strong similarity and were likely to be perceived as the same by bees. Pollen removal and fruit-set were recorded at 18 sites over two years to test if fitness of Di. brumalis increased with the abundance of the model species. Key Results: Diuris brumalis shares the pollinator species Trichococolletes capillosus and T. leucogenys (Hymenoptera: Colletidae) with co-flowering Faboideae from the genus Daviesia. On Di. brumalis, Trichocolletes exhibited the same stereotyped food-foraging and mate-patrolling behaviour that they exhibit on Daviesia. Diuris and pea plants showed strong morphological similarity compared to the co-flowering plant community, while the spectral reflectance of Diuris was similar to that of Daviesia spp. Fruit-set and pollen removal of Di. brumalis was highest at sites with a greater number of Daviesia flowers. Conclusions: Diuris brumalis is pollinated by mimicry of co-occurring congeneric Faboideae species. Evidence for mimicry of multiple models, all of which share pollinator species, suggests that this may represent a guild mimicry system. Interestingly, Di. brumalis belongs to a complex of species with similar floral traits, suggesting that this represents a useful system for investigating speciation in lineages that employ mimicry of food plants.


Subject(s)
Bees/physiology , Biological Mimicry , Fabaceae/physiology , Orchidaceae/physiology , Pollination , Animals , Feeding Behavior , Sexual Behavior, Animal , Western Australia
14.
Proc Biol Sci ; 284(1848)2017 02 08.
Article in English | MEDLINE | ID: mdl-28179522

ABSTRACT

Field metabolic rate (FMR) links the energy budget of an animal with the constraints of its ecosystem, but is particularly difficult to measure for small organisms. Landscape degradation exacerbates environmental adversity and reduces resource availability, imposing higher costs of living for many organisms. Here, we report a significant effect of landscape degradation on the FMR of free-flying Apis mellifera, estimated using 86Rb radio-isotopic turnover. We validated the relationship between 86Rb kb and metabolic rate for worker bees in the laboratory using flow-through respirometry. We then released radioisotopically enriched individuals into a natural woodland and a heavily degraded and deforested plantation. FMRs of worker bees in natural woodland vegetation were significantly higher than in a deforested landscape. Nectar consumption, estimated using 22Na radio-isotopic turnover, also differed significantly between natural and degraded landscapes. In the deforested landscape, we infer that the costs of foraging exceeded energetic availability, and honeybees instead foraged less and depended more on stored resources in the hive. If this is generally the case with increasing landscape degradation, this will have important implications for the provision of pollination services and the effectiveness and resilience of ecological restoration practice.


Subject(s)
Bees/metabolism , Ecosystem , Plant Nectar , Animals
15.
J Exp Biol ; 219(Pt 10): 1552-62, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26994173

ABSTRACT

Seasonal acclimatisation of thermal tolerance, evaporative water loss and metabolic rate, along with regulation of the hive environment, are key ways whereby hive-based social insects mediate climatic challenges throughout the year, but the relative importance of these traits remains poorly understood. Here, we examined seasonal variation in metabolic rate and evaporative water loss of worker bees, and seasonal variation of hive temperature and relative humidity (RH), for the stingless bee Austroplebeia essingtoni (Apidae: Meliponini) in arid tropical Australia. Both water loss and metabolic rate were lower in the cooler, dry winter than in the hot, wet summer at most ambient temperatures between 20°C and 45°C. Contrary to expectation, thermal tolerance thresholds were higher in the winter than in the summer. Hives were cooler in the cooler, dry winter than in the hot, wet summer, linked to an apparent lack of hive thermoregulation. The RH of hives was regulated at approximately 65% in both seasons, which is higher than unoccupied control hives in the dry season, but less than unoccupied control hives in the wet season. Although adaptations to promote water balance appear more important for survival of A. essingtoni than traits related to temperature regulation, their capacity for water conservation is coincident with increased thermal tolerance. For these small, eusocial stingless bees in the arid tropics, where air temperatures are relatively high and stable compared with temperate areas, regulation of hive humidity appears to be of more importance than temperature for maintaining hive health.


Subject(s)
Bees/physiology , Humidity , Nesting Behavior/physiology , Temperature , Animals , Basal Metabolism/physiology , Body Weight/physiology , Climate , Models, Biological , Seasons , Water Loss, Insensible
16.
Ann Bot ; 117(2): 237-47, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26578720

ABSTRACT

BACKGROUND AND AIMS: Organisms occupying the edges of natural geographical ranges usually survive at the extreme limits of their innate physiological tolerances. Extreme and prolonged fluctuations in environmental conditions, often associated with climate change and exacerbated at species' geographical range edges, are known to trigger alternative responses in reproduction. This study reports the first observations of adventitious inflorescence-derived plantlet formation in the marine angiosperm Posidonia australis, growing at the northern range edge (upper thermal and salinity tolerance) in Shark Bay, Western Australia. These novel plantlets are described and a combination of microsatellite DNA markers and flow cytometry is used to determine their origin. METHODS: Polymorphic microsatellite DNA markers were used to generate multilocus genotypes to determine the origin of the adventitious inflorescence-derived plantlets. Ploidy and genome size were estimated using flow cytometry. KEY RESULTS: All adventitious plantlets were genetically identical to the maternal plant and were therefore the product of a novel pseudoviviparous reproductive event. It was found that 87 % of the multilocus genotypes contained three alleles in at least one locus. Ploidy was identical in all sampled plants. The genome size (2 C value) for samples from Shark Bay and from a separate site much further south was not significantly different, implying they are the same ploidy level and ruling out a complete genome duplication (polyploidy). CONCLUSIONS: Survival at range edges often sees the development of novel responses in the struggle for survival and reproduction. This study documents a physiological response at the trailing edge, whereby reproductive strategy can adapt to fluctuating conditions and suggests that the lower-than-usual water temperature triggered unfertilized inflorescences to 'switch' to growing plantlets that were adventitious clones of their maternal parent. This may have important long-term implications as both genetic and ecological constraints may limit the ability to adapt or range-shift; this seagrass meadow in Shark Bay already has low genetic diversity, no sexual reproduction and no seedling recruitment.


Subject(s)
Alismatales/physiology , Mosaicism , Reproduction/physiology , Alismatales/genetics , Alleles , Genetic Variation , Inflorescence/physiology , Microsatellite Repeats , Western Australia
17.
BMC Biol ; 13: 108, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26689715

ABSTRACT

Karrikins are a family of compounds produced by wildfires that can stimulate the germination of dormant seeds of plants from numerous families. Seed plants could have 'discovered' karrikins during fire-prone times in the Cretaceous period when flowering plants were evolving rapidly. Recent research suggests that karrikins mimic an unidentified endogenous compound that has roles in seed germination and early plant development. The endogenous signalling compound is presumably not only similar to karrikins, but also to the related strigolactone hormones.


Subject(s)
Fires , Germination , Lactones/metabolism , Pyrans/metabolism , Soil/chemistry
18.
Development ; 139(7): 1285-95, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22357928

ABSTRACT

Karrikins are butenolides derived from burnt vegetation that stimulate seed germination and enhance seedling responses to light. Strigolactones are endogenous butenolide hormones that regulate shoot and root architecture, and stimulate the branching of arbuscular mycorrhizal fungi. Thus, karrikins and strigolactones are structurally similar but physiologically distinct plant growth regulators. In Arabidopsis thaliana, responses to both classes of butenolides require the F-box protein MAX2, but it remains unclear how discrete responses to karrikins and strigolactones are achieved. In rice, the DWARF14 protein is required for strigolactone-dependent inhibition of shoot branching. Here, we show that the Arabidopsis DWARF14 orthologue, AtD14, is also necessary for normal strigolactone responses in seedlings and adult plants. However, the AtD14 paralogue KARRIKIN INSENSITIVE 2 (KAI2) is specifically required for responses to karrikins, and not to strigolactones. Phylogenetic analysis indicates that KAI2 is ancestral and that AtD14 functional specialisation has evolved subsequently. Atd14 and kai2 mutants exhibit distinct subsets of max2 phenotypes, and expression patterns of AtD14 and KAI2 are consistent with the capacity to respond to either strigolactones or karrikins at different stages of plant development. We propose that AtD14 and KAI2 define a class of proteins that permit the separate regulation of karrikin and strigolactone signalling by MAX2. Our results support the existence of an endogenous, butenolide-based signalling mechanism that is distinct from the strigolactone pathway, providing a molecular basis for the adaptive response of plants to smoke.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/genetics , Furans/chemistry , Gene Expression Regulation, Plant , Hydrolases/physiology , Lactones/chemistry , Pyrans/chemistry , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Alleles , Arabidopsis Proteins/genetics , Hydrolases/genetics , Light , Models, Biological , Mutation , Phenotype , Phylogeny , Plant Growth Regulators/metabolism , Plant Physiological Phenomena , Signal Transduction
19.
Plant Physiol ; 165(3): 1221-1232, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24808100

ABSTRACT

Two α/ß-fold hydrolases, KARRIKIN INSENSITIVE2 (KAI2) and Arabidopsis thaliana DWARF14 (AtD14), are necessary for responses to karrikins (KARs) and strigolactones (SLs) in Arabidopsis (Arabidopsis thaliana). Although KAI2 mediates responses to KARs and some SL analogs, AtD14 mediates SL but not KAR responses. To further determine the specificity of these proteins, we assessed the ability of naturally occurring deoxystrigolactones to inhibit Arabidopsis hypocotyl elongation, regulate seedling gene expression, suppress outgrowth of secondary inflorescences, and promote seed germination. Neither 5-deoxystrigol nor 4-deoxyorobanchol was active in KAI2-dependent seed germination or hypocotyl elongation, but both were active in AtD14-dependent hypocotyl elongation and secondary shoot growth. However, the nonnatural enantiomer of 5-deoxystrigol was active through KAI2 in growth and gene expression assays. We found that the four stereoisomers of the SL analog GR24 had similar activities to their deoxystrigolactone counterparts. The results suggest that AtD14 and KAI2 exhibit selectivity to the butenolide D ring in the 2'R and 2'S configurations, respectively. However, we found, for nitrile-debranone (CN-debranone, a simple SL analog), that the 2'R configuration is inactive but that the 2'S configuration is active through both AtD14 and KAI2. Our results support the conclusion that KAI2-dependent signaling does not respond to canonical SLs. Furthermore, racemic mixtures of chemically synthesized SLs and their analogs, such as GR24, should be used with caution because they can activate responses that are not specific to naturally occurring SLs. In contrast, the use of specific stereoisomers might provide valuable information about the specific perception systems operating in different plant tissues, parasitic weed seeds, and arbuscular mycorrhizae.

20.
Plant Cell Environ ; 38(1): 50-60, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24811370

ABSTRACT

Nitrogen (N) transfer among plants has been found where at least one plant can fix N2 . In nutrient-poor soils, where plants with contrasting nutrient-acquisition strategies (without N2 fixation) co-occur, it is unclear if N transfer exists and what promotes it. A novel multi-species microcosm pot experiment was conducted to quantify N transfer between arbuscular mycorrhizal (AM), ectomycorrhizal (EM), dual AM/EM, and non-mycorrhizal cluster-rooted plants in nutrient-poor soils with mycorrhizal mesh barriers. We foliar-fed plants with a K(15) NO3 solution to quantify one-way N transfer from 'donor' to 'receiver' plants. We also quantified mycorrhizal colonization and root intermingling. Transfer of N between plants with contrasting nutrient-acquisition strategies occurred at both low and high soil nutrient levels with or without root intermingling. The magnitude of N transfer was relatively high (representing 4% of donor plant N) given the lack of N2 fixation. Receiver plants forming ectomycorrhizas or cluster roots were more enriched compared with AM-only plants. We demonstrate N transfer between plants of contrasting nutrient-acquisition strategies, and a preferential enrichment of cluster-rooted and EM plants compared with AM plants. Nutrient exchanges among plants are potentially important in promoting plant coexistence in nutrient-poor soils.


Subject(s)
Mycorrhizae/physiology , Nitrogen/metabolism , Plants/metabolism , Biological Transport , Biomass , Nitrogen Fixation , Nitrogen Isotopes , Plant Roots/metabolism , Plant Roots/microbiology , Plant Shoots/metabolism , Plant Shoots/microbiology , Plants/microbiology , Soil
SELECTION OF CITATIONS
SEARCH DETAIL