Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cell Biochem Funct ; 42(4): e4036, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778584

ABSTRACT

Ferroptosis is a novel nonapoptotic form of cell death characterized by iron-dependent reactive oxygen species-mediated lipid peroxidation. In several different cell systems, the tumor suppressor p53 can enhance sensitivity to ferroptotic inducers. At least half of all human cancers show loss of function of p53. Furthermore, many of those tumors express mutant forms of p53 that has lost its wild-type function. Several groups have designed small molecules that can reactivate the wild-type function of these missense p53 mutants. We reasoned that p53 reactivators may also enhance sensitivity of certain cancer cells to ferroptosis stimuli. To test this idea we combined a number of different p53 reactivators with small molecule inducers of ferroptosis. In contrast, we observed that several p53 reactivators protected cells from cell death induced by ferroptotic inducers. Surprisingly, this protection still occurred in p53-null cell lines. We observed that these reactivators were neither free radical scavengers nor ion chelators. One of these p53 reactivator molecules, NSC 59984, reduced expression of GPX4, which is unlikely to explain its ability to reduce sensitivity to ferroptosis. We suggest that these p53 reactivators function via an unknown, p53-independent manner to suppress ferroptosis.


Subject(s)
Breast Neoplasms , Ferroptosis , Tumor Suppressor Protein p53 , Humans , Ferroptosis/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Female , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/antagonists & inhibitors , Lipid Peroxidation/drug effects , Mutation
2.
J Biol Chem ; 297(6): 101365, 2021 12.
Article in English | MEDLINE | ID: mdl-34728216

ABSTRACT

p53 is a well-established critical cell cycle regulator. By inducing transcription of the gene encoding p21, p53 inhibits cyclin-dependent kinase (CDK)-mediated phosphorylation of cell cycle inhibitor retinoblastoma (RB) proteins. Phosphorylation of RB releases E2F transcription factor proteins that transactivate cell cycle-promoting genes. Here, we sought to uncover the contribution of p53, p21, CDK, RB, and E2F to the regulation of ferroptosis, an oxidative form of cell death. Our studies have uncovered unexpected complexity in this regulation. First, we showed that elevated levels of p53 enhance ferroptosis in multiple inducible and isogenic systems. On the other hand, we found that p21 suppresses ferroptosis. Elevation of CDK activity also suppressed ferroptosis under conditions where p21 suppressed ferroptosis, suggesting that the impact of p21 must extend beyond CDK inhibition. Furthermore, we showed that overexpression of E2F suppresses ferroptosis in part via a p21-dependent mechanism, consistent with reports that this transcription factor can induce transcription of p21. Finally, deletion of RB genes enhanced ferroptosis. Taken together, these results show that signals affecting ferroptotic sensitivity emanate from multiple points within the p53 tumor suppressor pathway.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinases/metabolism , E2F1 Transcription Factor/metabolism , Ferroptosis/physiology , Retinoblastoma Protein/metabolism , Tumor Suppressor Protein p53/physiology , Animals , Cell Line, Tumor , Cells, Cultured , Humans , Mice , Mice, Knockout , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
3.
Bioorg Chem ; 122: 105700, 2022 05.
Article in English | MEDLINE | ID: mdl-35313238

ABSTRACT

We recently reported a new class of imidazole-based chalcones as potential antimitotic agents. In view of their promising cytotoxic activity, a comprehensive structure-activity relationship (SAR) of these compounds was undertaken focusing on four major structural variations: the length of the molecule, the Michael acceptor character, the nature and substitution pattern of ring B, and the nature of the amide functionality tethering ring B. These second-generation analogs (IBCs) demonstrated a superior bioactivity profile than the previously reported imidazole chalcones (referred to as IPEs). The analog IBC-2 with one less methylene group (nor series) and para-fluoro substituted ring B demonstrated the best cytotoxicity profile among the library of compounds. A computational analysis of the NCI-60 data associated both IBCs and the previously reported IPEs with the privileged pharmacological pharmacophore of chalcones. Interestingly, biological studies suggest that the imidazole ring is essential for cytotoxic activity of the elongated chalcone analogues. Immunofluorescence studies revealed that IBC-2, unlike IPEs, has the ability to induce microtubule catastrophe independently of Aurora-B inhibition. The effects of IBC-2 on microtubule dynamics are similar to those of Nocodazole, but the cell cycle effects appear to be different. In-silico studies demonstrate that the members of the new series have the ability to bind to the colchicine binding site of ß-tubulin with binding scores similar to those of IPEs, corresponding chalcones and Nocodazole. Although tubulin binding can partially explain the biological effects of IBC-2, on-going target identification studies are aimed at further investigation of its biological targets.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Antineoplastic Agents/chemistry , Chalcone/pharmacology , Chalcones/chemistry , Imidazoles , Microtubules , Structure-Activity Relationship , Tubulin/metabolism
4.
J Cell Biochem ; 122(3-4): 413-424, 2021 04.
Article in English | MEDLINE | ID: mdl-33377232

ABSTRACT

Ferroptosis is a form of iron-dependent cell death characterized by elevated lipid peroxides and reactive oxygen species (ROS). Glutathione (GSH) plays an essential role in scavenging ROS to maintain cell viability and acts as a cofactor of GSH peroxidase 4 (GPX4) that protects lipids from oxidation. We have previously described a novel class of small molecules that induce ferroptosis in certain types of cancer cells. These compounds induce ferroptosis by blocking the uptake of cystine required for GSH synthesis. Even though ferroptosis is a well-established form of cell death, signaling pathways that modulate this process are not known. Therefore, we used a panel of growth factors/kinase inhibitors to test effects on ferroptosis induced by our lead compound. We discovered that BMS536924, a dual inhibitor of insulin-like growth and insulin receptors, is a potent inhibitor of ferroptosis. Further investigation indicated that the anti-ferroptotic activity of BMS536924 does not lie in its ability to inhibit insulin signal transduction. Instead, we provide evidence that BMS536924 binds iron, an essential cofactor in ferroptosis. Our results suggest caution in interpreting the effects of BMS536924 in investigations of insulin signaling and uncover a novel ferroptosis inhibitor.


Subject(s)
Benzimidazoles/pharmacology , Ferroptosis/drug effects , Pyridones/pharmacology , Cell Survival/drug effects , Cystine/metabolism , Glutathione/metabolism , Humans , Lipid Peroxidation/drug effects , Reactive Oxygen Species/metabolism , Receptor, Insulin/metabolism
5.
Bioorg Chem ; 116: 105297, 2021 11.
Article in English | MEDLINE | ID: mdl-34509798

ABSTRACT

Despite the advances in treatment strategies, cancer is still the second leading cause of death in the USA. A majority of the currently used cancer drugs have limitations in their clinical use due to poor selectivity, toxic side effects and multiple drug resistance, warranting the development of new anticancer drugs of different mechanisms of action. Here we describe the design, synthesis and initial biological evaluation of a new class of antimitotic agents that modulate tubulin polymerization. Structurally, these compounds are chalcone mimics containing a 1-(1H-imidazol-2-yl)ethan-1-one moiety, which was initially introduced to act as a metal-binding group and inhibit histone deacetylase enzymes. Although several analogues selectively inhibited purified HDAC8 with IC50 values in low micromolar range, tissue culture studies suggest that HDAC inhibition is not a major mechanism responsible for cytotoxicity. The compounds demonstrated cell growth inhibition with GI50 values of upper nanomolar to low micromolar potency with significant selectively for cancer over normal cells. Interestingly, several compounds arrested HeLaM cells in mitosis and seem to target tubulin to cause mitotic arrest. For example, when combined with inhibitors of Aurora B kinase, they led to dramatic disassembly of the mitotic spindle. In-vitro tubulin polymerization studies showed that the compounds reduced the rate of polymerization of microtubules during the elongation phase and lowered the amount of polymerized tubulin during the plateau phase. Finally, in silico docking studies identified binding of IPE-7 to the colchicine site with similar affinity as the test compound D64131. These compounds represent a new antimitotic pharmacophore with limited HDAC inhibitory activity.


Subject(s)
Antineoplastic Agents/pharmacology , Cytotoxins/pharmacology , Ethanol/pharmacology , Imidazoles/pharmacology , Microtubules/drug effects , Tubulin Modulators/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ethanol/analogs & derivatives , Ethanol/chemistry , HCT116 Cells , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Microtubules/metabolism , Molecular Structure , Polymerization/drug effects , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tumor Cells, Cultured
6.
Res Sq ; 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36778475

ABSTRACT

Tumor suppressor RB binds to E2F family proteins and modulates cell cycle progression. Cyclin dependent kinases (CDK) regulate the interaction of RB/E2F by phosphorylating RB. Previously, we have revealed that CDK2, RB and E2F inhibit ferroptosis. Ferroptosis is a non-apoptotic, iron-dependent form of cell death characterized by toxic lipid peroxidation. Here we provide evidence that CDK2 suppresses ferroptosis through phosphorylation of RB. We approach this question by overexpressing WT-RB or a mutant RB that cannot be phosphorylated by CDKs (RBΔCDK) along with CDK2/cyclinE followed by analysis of ferroptosis. We also observed that E2F1 regulates of both pro and anti-ferroptotic proteins including ALOX5, MYC SLC7A11, ATF4, and GPX4 and finally renders a net inhibitory role in ferroptosis. Interestingly, we also found a cell type dependent compensatory effect of E2F3 upon E2F1 depletion. This compensatory effect resulted in no change of ferroptotic target genes after E2F1 knock down in an osteosarcoma cell line. Taken together, our study reveals that cancer cells protect themselves from ferroptosis through cell cycle regulatory proteins.

7.
J Med Chem ; 66(19): 13809-13820, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37729617

ABSTRACT

Boron neutron capture therapy (BNCT) is a re-emerging binary cellular level cancer intervention that occurs through the interaction of a cancer-specific 10boron (10B) drug and neutrons. We created a new 10B drug, 3-borono-l-tyrosine (BTS), that improves on the characteristics of the main historical BNCT drug 4-borono-l-phenylalanine (BPA). BTS has up to 4 times greater uptake in vitro than BPA and increased cellular retention. Like BPA, BTS uptake is mediated by the l-type amino acid transporter-1 (LAT1) but is less sensitive to natural amino acid competition. BTS can be formulated and bolus dosed at much higher levels than BPA, resulting in 2-3 times greater boron delivery in vivo. Fast blood clearance and greater tumor boron delivery result in superior tumor-to-blood ratios. BTS boron delivery appears to correlate with LAT1 expression. BTS is a promising boron delivery drug that has the potential to improve modern BNCT interventions.


Subject(s)
Amino Acids , Boron Neutron Capture Therapy , Cell Line, Tumor , Boron , Boron Neutron Capture Therapy/methods , Solubility , Phenylalanine/chemistry , Boron Compounds/chemistry
8.
ACS Chem Neurosci ; 13(7): 1014-1029, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35302736

ABSTRACT

Intracerebral hemorrhage (ICH) is devastating among stroke types with high mortality. To date, not a single therapeutic intervention has been successful. Cofilin plays a critical role in inflammation and cell death. In the current study, we embarked on designing and synthesizing a first-in-class small-molecule inhibitor of cofilin to target secondary complications of ICH, mainly neuroinflammation. A series of compounds were synthesized, and two lead compounds SZ-3 and SK-1-32 were selected for further studies. Neuronal and microglial viabilities were assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay using neuroblastoma (SHSY-5Y) and human microglial (HMC-3) cell lines, respectively. Lipopolysaccharide (LPS)-induced inflammation in HMC-3 cells was used for neurotoxicity assay. Other assays include nitric oxide (NO) by Griess reagent, cofilin inhibition by F-actin depolymerization, migration by scratch wound assay, tumor necrosis factor (TNF-α) by enzyme-linked immunosorbent assay (ELISA), protease-activated receptor-1 (PAR-1) by immunocytochemistry and Western blotting (WB), and protein expression levels of several proteins by WB. SK-1-32 increased neuronal/microglial survival, reduced NO, and prevented neurotoxicity. However, SZ-3 showed no effect on neuronal/microglial survival but prevented microglia from LPS-induced inflammation by decreasing NO and preventing neurotoxicity. Therefore, we selected SZ-3 for further molecular studies, as it showed potent anti-inflammatory activities. SZ-3 decreased cofilin severing activity, and its treatment of LPS-activated HMC-3 cells attenuated microglial activation and suppressed migration and proliferation. HMC-3 cells subjected to thrombin, as an in vitro model for hemorrhagic stroke, and treated with SZ-3 after 3 h showed significantly decreased NO and TNF-α, significantly increased protein expression of phosphocofilin, and decreased PAR-1. In addition, SZ-3-treated SHSY-5Y showed a significant increase in cell viability by significantly reducing nuclear factor-κ B (NF-κB), caspase-3, and high-temperature requirement (HtrA2). Together, our results support the novel idea of targeting cofilin to counter neuroinflammation during secondary injury following ICH.


Subject(s)
Actin Depolymerizing Factors , Brain Injuries , Actin Depolymerizing Factors/metabolism , Actin Depolymerizing Factors/pharmacology , Brain Injuries/metabolism , Humans , Inflammation/metabolism , Lipopolysaccharides/toxicity , Microglia , NF-kappa B/metabolism , Neuroinflammatory Diseases
9.
Sci Rep ; 9(1): 5926, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30976078

ABSTRACT

Effective management of advanced cancer requires systemic treatment including small molecules that target unique features of aggressive tumor cells. At the same time, tumors are heterogeneous and current evidence suggests that a subpopulation of tumor cells, called tumor initiating or cancer stem cells, are responsible for metastatic dissemination, tumor relapse and possibly drug resistance. Classical apoptotic drugs are less effective against this critical subpopulation. In the course of generating a library of open-chain epothilones, we discovered a new class of small molecule anticancer agents that has no effect on tubulin but instead kills selected cancer cell lines by harnessing reactive oxygen species to induce ferroptosis. Interestingly, we find that drug sensitivity is highest in tumor cells with a mesenchymal phenotype. Furthermore, these compounds showed enhanced toxicity towards mesenchymal breast cancer populations with cancer stem cell properties in vitro. In summary, we have identified a new class of small molecule ferroptotic agents that warrant further investigation.


Subject(s)
Antineoplastic Agents/pharmacology , Ferroptosis , Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Reactive Oxygen Species/metabolism , Small Molecule Libraries/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation , Humans , Mesoderm/drug effects , Mesoderm/pathology , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Small Molecule Libraries/chemistry , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL