Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Infect Dis ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526342

ABSTRACT

In 2011, in Germany, Escherichia coli O104:H4 caused the enterohemorrhagic E. coli (EHEC) outbreak with the highest incidence rate of hemolytic uremic syndrome. This pathogen carries an exceptionally potent combination of EHEC- and enteroaggregative E. coli (EAEC)-specific virulence factors. Here, we identified an E. coli O104:H4 isolate that carried a single nucleotide polymorphism (SNP) in the start codon (ATG > ATA) of rpoS, encoding the alternative sigma factor S. The rpoS ATG > ATA SNP was associated with enhanced EAEC-specific virulence gene expression. Deletion of rpoS in E. coli O104:H4 Δstx2 and typical EAEC resulted in a similar effect. Both rpoS ATG > ATA and ΔrpoS strains exhibited stronger virulence-related phenotypes in comparison to wild type. Using promoter-reporter gene fusions, we demonstrated that wild-type RpoS repressed aggR, encoding the main regulator of EAEC virulence. In summary, our work demonstrates that RpoS acts as a global repressor of E. coli O104:H4 virulence, primarily through an AggR-dependent mechanism.

2.
Nephrol Dial Transplant ; 39(4): 581-588, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-37891013

ABSTRACT

Antimicrobial resistance (AMR) has emerged as a significant global healthcare problem. Antibiotic use has accelerated the physiologic process of AMR, particularly in Gram-negative pathogens. Urinary tract infections (UTIs) are predominantly of a Gram-negative nature. Uropathogens are evolutionarily highly adapted and selected strains with specific virulence factors, suggesting common mechanisms in how bacterial cells acquire virulence and AMR factors. The simultaneous increase in resistance and virulence is a complex and context-dependent phenomenon. Among known AMR mechanisms, the plenitude of different ß-lactamases is especially prominent. The risk for AMR in UTIs varies in different patient populations. A history of antibiotic consumption and the physiology of urinary flow are major factors that shape AMR prevalence. The urinary tract is in close crosstalk with the microbiome of other compartments, including the gut and genital tracts. In addition, pharmacokinetic properties and the physiochemical composition of urinary compartments can contribute to the emergence of AMR. Alternatives to antibiotic treatment and a broader approach to address bacterial infections are needed. Among the various alternatives studied, antimicrobial peptides and bacteriophage treatment appear to be highly promising approaches. We herein summarize the present knowledge of clinical and microbiological AMR in UTIs and discuss innovative approaches, namely new risk prediction tools and the use of non-antibiotic approaches to defend against uropathogenic microbes.


Subject(s)
Urinary Tract Infections , Urinary Tract , Humans , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Urinary Tract Infections/drug therapy
3.
Biochemistry ; 61(20): 2188-2197, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36166360

ABSTRACT

The receptor binding domain(s) (RBD) of spike (S) proteins of SARS-CoV-1 and SARS-CoV-2 (severe acute respiratory syndrome coronavirus) undergoes closed to open transition to engage with host ACE2 receptors. In this study, using multi atomistic (equilibrium) and targeted (non-equilibrium) molecular dynamics simulations, we have compared energetics of RBD opening pathways in full-length (modeled from cryo-EM structures) S proteins of SARS-CoV-1 and SARS-CoV-2. Our data indicate that amino acid variations at the RBD interaction interface can culminate into distinct free energy landscapes of RBD opening in these S proteins. We further report that mutations in the S protein of SARS-CoV-2 variants of concern can reduce the protein-protein interaction affinity of RBD(s) with its neighboring domains and could favor its opening to access ACE2 receptors. The findings can also aid in predicting the impact of future mutations on the rate of S protein opening for rapid host receptor scanning.


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Amino Acids/metabolism , Angiotensin-Converting Enzyme 2/genetics , Binding Sites , COVID-19/genetics , Mutation , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
4.
Glia ; 70(1): 35-49, 2022 01.
Article in English | MEDLINE | ID: mdl-34487573

ABSTRACT

Brain lymphatic endothelial cells (BLECs) constitute a group of loosely connected endothelial cells that reside within the meningeal layer of the zebrafish brain without forming a vascular tubular system. BLECs have been shown to readily endocytose extracellular cargo molecules from the brain parenchyma, however, their functional relevance in relation to microglia remains enigmatic. We here compare their functional uptake efficiency for several macromolecules and bacterial components with microglia in a qualitative and quantitative manner in 5-day-old zebrafish embryos. We find BLECs to be significantly more effective in the uptake of proteins, polysaccharides and virus particles as compared to microglia, while larger particles like bacteria are only ingested by microglia but not by BLECs, implying a clear distribution of tasks between the two cell types in the brain area. In addition, we compare BLECs to the recently discovered scavenger endothelial cells (SECs) of the cardinal vein and find them to accept an identical set of substrate molecules. Our data identifies BLECs as the first brain-associated SEC population in vertebrates, and demonstrates that BLECs cooperate with microglia to remove particle waste from the brain.


Subject(s)
Endothelial Cells , Microglia , Animals , Brain/metabolism , Endothelial Cells/metabolism , Meninges , Zebrafish
5.
Mol Microbiol ; 115(2): 255-271, 2021 02.
Article in English | MEDLINE | ID: mdl-32985020

ABSTRACT

The ubiquitous human commensal Escherichia coli has been well investigated through its model representative E. coli K-12. In this work, we initially characterized E. coli Fec10, a recently isolated human commensal strain of phylogroup A/sequence type ST10. Compared to E. coli K-12, the 4.88 Mbp Fec10 genome is characterized by distinct single-nucleotide polymorphisms and acquisition of genomic islands. In addition, E. coli Fec10 possesses a 155.86 kbp IncY plasmid, a composite element based on phage P1. pFec10 harbours multiple cargo genes such as coding for a tetrathionate reductase and its corresponding regulatory two-component system. Among the cargo genes is also the Transmissible Locus of Protein Quality Control (TLPQC), which mediates tolerance to lethal temperatures in bacteria. The disaggregase ClpGGI of TLPQC constitutes a major determinant of the thermotolerance of E. coli Fec10. We confirmed stand-alone disaggregation activity, but observed distinct biochemical characteristics of ClpGGI-Fec10 compared to the nearly identical Pseudomonas aeruginosa ClpGGI-SG17M. Furthermore, we noted a unique contribution of ClpGGI-Fec10 to the exquisite thermotolerance of E. coli Fec10, suggesting functional differences between both disaggregases in vivo. Detection of thermotolerance in 10% of human commensal E. coli isolates hints to the successful establishment of food-borne heat-resistant strains in the human gut.


Subject(s)
Escherichia coli/metabolism , Thermotolerance/genetics , Thermotolerance/physiology , Bacteriophage P1/genetics , Bacteriophages/genetics , Escherichia coli/genetics , Genome, Bacterial , Genomic Islands , Humans , Oxygen Consumption/physiology , Plasmids/genetics , Symbiosis/physiology
6.
Brain ; 144(4): 1152-1166, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33899089

ABSTRACT

A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut-CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, we report that dietary supplementation with conjugated linoleic acid, a mixture of linoleic acid isomers, ameliorates CNS autoimmunity in a spontaneous mouse model of multiple sclerosis, accompanied by an attenuation of intestinal barrier dysfunction and inflammation as well as an increase in intestinal myeloid-derived suppressor-like cells. Protective effects of dietary supplementation with conjugated linoleic acid were not abrogated upon microbiota eradication, indicating that the microbiome is dispensable for these conjugated linoleic acid-mediated effects. Instead, we observed a range of direct anti-inflammatory effects of conjugated linoleic acid on murine myeloid cells including an enhanced IL10 production and the capacity to suppress T-cell proliferation. Finally, in a human pilot study in patients with multiple sclerosis (n = 15, under first-line disease-modifying treatment), dietary conjugated linoleic acid-supplementation for 6 months significantly enhanced the anti-inflammatory profiles as well as functional signatures of circulating myeloid cells. Together, our results identify conjugated linoleic acid as a potent modulator of the gut-CNS axis by targeting myeloid cells in the intestine, which in turn control encephalitogenic T-cell responses.


Subject(s)
Dietary Supplements , Enteritis/pathology , Linoleic Acids, Conjugated/pharmacology , Monocytes/immunology , Multiple Sclerosis, Relapsing-Remitting/pathology , Adult , Animals , Autoimmunity/drug effects , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Enteritis/immunology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Multiple Sclerosis, Relapsing-Remitting/immunology , Pilot Projects , Proof of Concept Study
7.
Part Fibre Toxicol ; 19(1): 21, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35321750

ABSTRACT

BACKGROUND: The oral uptake of nanoparticles is an important route of human exposure and requires solid models for hazard assessment. While the systemic availability is generally low, ingestion may not only affect gastrointestinal tissues but also intestinal microbes. The gut microbiota contributes essentially to human health, whereas gut microbial dysbiosis is known to promote several intestinal and extra-intestinal diseases. Gut microbiota-derived metabolites, which are found in the blood stream, serve as key molecular mediators of host metabolism and immunity. RESULTS: Gut microbiota and the plasma metabolome were analyzed in male Wistar rats receiving either SiO2 (1000 mg/kg body weight/day) or Ag nanoparticles (100 mg/kg body weight/day) during a 28-day oral gavage study. Comprehensive clinical, histopathological and hematological examinations showed no signs of nanoparticle-induced toxicity. In contrast, the gut microbiota was affected by both nanoparticles, with significant alterations at all analyzed taxonomical levels. Treatments with each of the nanoparticles led to an increased abundance of Prevotellaceae, a family with gut species known to be correlated with intestinal inflammation. Only in Ag nanoparticle-exposed animals, Akkermansia, a genus known for its protective impact on the intestinal barrier was depleted to hardly detectable levels. In SiO2 nanoparticles-treated animals, several genera were significantly reduced, including probiotics such as Enterococcus. From the analysis of 231 plasma metabolites, we found 18 metabolites to be significantly altered in Ag-or SiO2 nanoparticles-treated rats. For most of these metabolites, an association with gut microbiota has been reported previously. Strikingly, both nanoparticle-treatments led to a significant reduction of gut microbiota-derived indole-3-acetic acid in plasma. This ligand of the arylhydrocarbon receptor is critical for regulating immunity, stem cell maintenance, cellular differentiation and xenobiotic-metabolizing enzymes. CONCLUSIONS: The combined profiling of intestinal microbiome and plasma metabolome may serve as an early and sensitive indicator of gut microbiome changes induced by orally administered nanoparticles; this will help to recognize potential adverse effects of these changes to the host.


Subject(s)
Gastrointestinal Microbiome , Metal Nanoparticles , Animals , Body Weight , Male , Metabolome , Metal Nanoparticles/toxicity , Rats , Rats, Wistar , Silicon Dioxide/toxicity , Silver
8.
PLoS Pathog ; 15(6): e1007671, 2019 06.
Article in English | MEDLINE | ID: mdl-31181116

ABSTRACT

Pathogens rely on a complex virulence gene repertoire to successfully attack their hosts. We were therefore surprised to find that a single fimbrial gene reconstitution can return the virulence-attenuated commensal strain Escherichia coli 83972 to virulence, defined by a disease phenotype in human hosts. E. coli 83972pap stably reprogrammed host gene expression, by activating an acute pyelonephritis-associated, IRF7-dependent gene network. The PapG protein was internalized by human kidney cells and served as a transcriptional agonist of IRF-7, IFN-ß and MYC, suggesting direct involvement of the fimbrial adhesin in this process. IRF-7 was further identified as a potent upstream regulator (-log (p-value) = 61), consistent with the effects in inoculated patients. In contrast, E. coli 83972fim transiently attenuated overall gene expression in human hosts, enhancing the effects of E. coli 83972. The inhibition of RNA processing and ribosomal assembly indicated a homeostatic rather than a pathogenic end-point. In parallel, the expression of specific ion channels and neuropeptide gene networks was transiently enhanced, in a FimH-dependent manner. The studies were performed to establish protective asymptomatic bacteriuria in human hosts and the reconstituted E. coli 83972 variants were developed to improve bacterial fitness for the human urinary tract. Unexpectedly, P fimbriae were able to drive a disease response, suggesting that like oncogene addiction in cancer, pathogens may be addicted to single super-virulence factors.


Subject(s)
Adhesins, Escherichia coli/metabolism , Escherichia coli/metabolism , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Adhesins, Escherichia coli/genetics , Cell Line , Escherichia coli/genetics , Escherichia coli/pathogenicity , Female , Fimbriae Proteins/genetics , Fimbriae, Bacterial/genetics , Humans , Interferon Regulatory Factor-7/metabolism , Interferon-beta/metabolism , Kidney/metabolism , Kidney/microbiology , Proto-Oncogene Proteins c-myc/metabolism
9.
Int J Med Microbiol ; 311(7): 151533, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34425494

ABSTRACT

Hybrid Shiga toxin (Stx)-producing Escherichia coli (STEC) and uropathogenic E. coli (UPEC) strains are phylogenetically positioned between STEC and UPEC and can cause both diarrhea and urinary tract infections (UTIs). However, their virulence properties and adaptation to different host milieu in comparison to canonical UPEC and STEC strains are unknown. We determined phenotypes of the STEC/UPEC hybrid with respect to virulence including acid resistance, motility, biofilm formation, siderophore production, and adherence to human colonic Caco-2 and bladder T24 cells and compared to phenotypes of commensal strain MG1655, UPEC strain 536, and STEC strains B2F1 and Sakai. Moreover, we assessed the adaptation of the hybrid to artificial urine medium (AUM) and simulated colonic environment medium (SCEM). Overall acid resistance at pH 2.5 was high except in strains B2F1 and hybrid 05-00787 which showed reduced and extremely low acid resistance, respectively. Motility was reduced in hybrid 05-00787 and 09-05501 but strong in the remaining hybrids. While some hybrids showed high biofilm formation in LB, overall biofilm formation in SCEM and AUM were low and non-existent, respectively. All strains tested showed siderophore activity at equilibrium. All strains except MG1655 adhered to Caco-2 cells with the hybrid having similar adherence when compared to 536 but exhibited 2 and 3 times lower adherence when compared to B2F1 and Sakai, respectively. All Stx-producing strains adhered stronger to T24 cells than strains 536 and MG1655. Overall growth in LB, SCEM and AUM was consistent within the hybrid strains, except hybrid 05-00787 which showed significantly different growth patterns. Our data suggest that the hybrid is adapted to both, the intestinal and extraintestinal milieu. Expression of phenotypes typical of intestinal and extraintestinal pathogens thereby supports its potential to cause diarrhea and UTI.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Uropathogenic Escherichia coli , Caco-2 Cells , Escherichia coli Proteins/genetics , Humans , Phenotype , Shiga Toxin/genetics , Uropathogenic Escherichia coli/genetics
10.
Chemistry ; 27(59): 14672-14680, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34324228

ABSTRACT

In this contribution we report on the synthesis, characterization and application of water-soluble zinc(II) phthalocyanines, which are decorated with four or eight umbelliferone moieties for photodynamic therapy (PDT). These compounds are linked peripherally to zinc(II) phthalocyanine by a triethylene glycol linker attached to pyridines, leading to cationic pyridinium units, able to increase the water solubility of the system. Beside their photophysical properties they were analyzed concerning their cellular distribution in human hepatocyte carcinoma (HepG2) cells as well as their phototoxicity towards HepG2 cells, Gram-positive (S. aureus strain 3150/12 and B. subtilis strain DB104) and Gram-negative bacteria (E. coli strain UTI89 and E. coli strain Nissle 1917). At low light doses and concentrations, they exhibit superb antimicrobial activity against Gram-positive bacteria as well as anti-tumor activity against HepG2. They are even capable to inactivate Gram-negative bacteria, whereas the dark toxicity remains low. These unique water-soluble compounds can be regarded as all-in-one type photosensitizers with broad applications ranges in the future.


Subject(s)
Anti-Infective Agents , Organometallic Compounds , Photochemotherapy , Escherichia coli , Humans , Isoindoles , Photosensitizing Agents/toxicity , Staphylococcus aureus , Umbelliferones , Water , Zinc , Zinc Compounds
SELECTION OF CITATIONS
SEARCH DETAIL