Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Affiliation country
Publication year range
1.
Neuroimage ; 285: 120470, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38016527

ABSTRACT

Resting-state fMRI can be used to identify recurrent oscillatory patterns of functional connectivity within the human brain, also known as dynamic brain states. Alterations in dynamic brain states are highly likely to occur following pediatric mild traumatic brain injury (pmTBI) due to the active developmental changes. The current study used resting-state fMRI to investigate dynamic brain states in 200 patients with pmTBI (ages 8-18 years, median = 14 years) at the subacute (∼1-week post-injury) and early chronic (∼ 4 months post-injury) stages, and in 179 age- and sex-matched healthy controls (HC). A k-means clustering analysis was applied to the dominant time-varying phase coherence patterns to obtain dynamic brain states. In addition, correlations between brain signals were computed as measures of static functional connectivity. Dynamic connectivity analyses showed that patients with pmTBI spend less time in a frontotemporal default mode/limbic brain state, with no evidence of change as a function of recovery post-injury. Consistent with models showing traumatic strain convergence in deep grey matter and midline regions, static interhemispheric connectivity was affected between the left and right precuneus and thalamus, and between the right supplementary motor area and contralateral cerebellum. Changes in static or dynamic connectivity were not related to symptom burden or injury severity measures, such as loss of consciousness and post-traumatic amnesia. In aggregate, our study shows that brain dynamics are altered up to 4 months after pmTBI, in brain areas that are known to be vulnerable to TBI. Future longitudinal studies are warranted to examine the significance of our findings in terms of long-term neurodevelopment.


Subject(s)
Brain Concussion , Brain Injuries , Humans , Child , Brain Concussion/diagnostic imaging , Nerve Net/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging
2.
Hum Brain Mapp ; 45(7): e26699, 2024 May.
Article in English | MEDLINE | ID: mdl-38726907

ABSTRACT

With the steadily increasing abundance of longitudinal neuroimaging studies with large sample sizes and multiple repeated measures, questions arise regarding the appropriate modeling of variance and covariance. The current study examined the influence of standard classes of variance-covariance structures in linear mixed effects (LME) modeling of fMRI data from patients with pediatric mild traumatic brain injury (pmTBI; N = 181) and healthy controls (N = 162). During two visits, participants performed a cognitive control fMRI paradigm that compared congruent and incongruent stimuli. The hemodynamic response function was parsed into peak and late peak phases. Data were analyzed with a 4-way (GROUP×VISIT×CONGRUENCY×PHASE) LME using AFNI's 3dLME and compound symmetry (CS), autoregressive process of order 1 (AR1), and unstructured (UN) variance-covariance matrices. Voxel-wise results dramatically varied both within the cognitive control network (UN>CS for CONGRUENCY effect) and broader brain regions (CS>UN for GROUP:VISIT) depending on the variance-covariance matrix that was selected. Additional testing indicated that both model fit and estimated standard error were superior for the UN matrix, likely as a result of the modeling of individual terms. In summary, current findings suggest that the interpretation of results from complex designs is highly dependent on the selection of the variance-covariance structure using LME modeling.


Subject(s)
Magnetic Resonance Imaging , Humans , Male , Female , Adolescent , Child , Brain Concussion/diagnostic imaging , Brain Concussion/physiopathology , Linear Models , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Executive Function/physiology
3.
Hum Brain Mapp ; 44(17): 6173-6184, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37800467

ABSTRACT

There is a growing body of research showing that cerebral pathophysiological processes triggered by pediatric mild traumatic brain injury (pmTBI) may extend beyond the usual clinical recovery timeline. It is paramount to further unravel these processes, because the possible long-term cognitive effects resulting from ongoing secondary injury in the developing brain are not known. In the current fMRI study, neural processes related to cognitive control were studied in 181 patients with pmTBI at sub-acute (SA; ~1 week) and early chronic (EC; ~4 months) stages post-injury. Additionally, a group of 162 age- and sex-matched healthy controls (HC) were recruited at equivalent time points. Proactive (post-cue) and reactive (post-probe) cognitive control were examined using a multimodal attention fMRI paradigm for either congruent or incongruent stimuli. To study brain network function, the triple-network model was used, consisting of the executive and salience networks (collectively known as the cognitive control network), and the default mode network. Additionally, whole-brain voxel-wise analyses were performed. Decreased deactivation was found within the default mode network at the EC stage following pmTBI during both proactive and reactive control. Voxel-wise analyses revealed sub-acute hypoactivation of a frontal area of the cognitive control network (left pre-supplementary motor area) during proactive control, with a reversed effect at the EC stage after pmTBI. Similar effects were observed in areas outside of the triple-network during reactive control. Group differences in activation during proactive control were limited to the visual domain, whereas for reactive control findings were more pronounced during the attendance of auditory stimuli. No significant correlations were present between task-related activations and (persistent) post-concussive symptoms. In aggregate, current results show alterations in neural functioning during cognitive control in pmTBI up to 4 months post-injury, regardless of clinical recovery. We propose that subacute decreases in activity reflect a general state of hypo-excitability due to the injury, while early chronic hyperactivation represents a compensatory mechanism to prevent default mode interference and to retain cognitive control.


Subject(s)
Brain Concussion , Cognition Disorders , Cognitive Dysfunction , Humans , Child , Brain Concussion/diagnostic imaging , Brain/diagnostic imaging , Cognition Disorders/etiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Magnetic Resonance Imaging , Cognition
4.
Brain ; 145(11): 4124-4137, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35727944

ABSTRACT

The underlying pathophysiology of paediatric mild traumatic brain injury and the time-course for biological recovery remains widely debated, with clinical care principally informed by subjective self-report. Similarly, clinical evidence indicates that adolescence is a risk factor for prolonged recovery, but the impact of age-at-injury on biomarkers has not been determined in large, homogeneous samples. The current study collected diffusion MRI data in consecutively recruited patients (n = 203; 8-18 years old) and age and sex-matched healthy controls (n = 170) in a prospective cohort design. Patients were evaluated subacutely (1-11 days post-injury) as well as at 4 months post-injury (early chronic phase). Healthy participants were evaluated at similar times to control for neurodevelopment and practice effects. Clinical findings indicated persistent symptoms at 4 months for a significant minority of patients (22%), along with residual executive dysfunction and verbal memory deficits. Results indicated increased fractional anisotropy and reduced mean diffusivity for patients, with abnormalities persisting up to 4 months post-injury. Multicompartmental geometric models indicated that estimates of intracellular volume fractions were increased in patients, whereas estimates of free water fractions were decreased. Critically, unique areas of white matter pathology (increased free water fractions or increased neurite dispersion) were observed when standard assumptions regarding parallel diffusivity were altered in multicompartmental models to be more biologically plausible. Cross-validation analyses indicated that some diffusion findings were more reproducible when ∼70% of the total sample (142 patients, 119 controls) were used in analyses, highlighting the need for large-sample sizes to detect abnormalities. Supervised machine learning approaches (random forests) indicated that diffusion abnormalities increased overall diagnostic accuracy (patients versus controls) by ∼10% after controlling for current clinical gold standards, with each diffusion metric accounting for only a few unique percentage points. In summary, current results suggest that novel multicompartmental models are more sensitive to paediatric mild traumatic brain injury pathology, and that this sensitivity is increased when using parameters that more accurately reflect diffusion in healthy tissue. Results also indicate that diffusion data may be insufficient to achieve a high degree of objective diagnostic accuracy in patients when used in isolation, which is to be expected given known heterogeneities in pathophysiology, mechanism of injury and even criteria for diagnoses. Finally, current results indicate ongoing clinical and physiological recovery at 4 months post-injury.


Subject(s)
Brain Concussion , White Matter , Adolescent , Humans , Child , Brain Concussion/pathology , Prospective Studies , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Magnetic Resonance Imaging/methods , Water , Brain/pathology
5.
J Int Neuropsychol Soc ; 28(7): 687-699, 2022 08.
Article in English | MEDLINE | ID: mdl-34376268

ABSTRACT

OBJECTIVE: Retrospective self-report is typically used for diagnosing previous pediatric traumatic brain injury (TBI). A new semi-structured interview instrument (New Mexico Assessment of Pediatric TBI; NewMAP TBI) investigated test-retest reliability for TBI characteristics in both the TBI that qualified for study inclusion and for lifetime history of TBI. METHOD: One-hundred and eight-four mTBI (aged 8-18), 156 matched healthy controls (HC), and their parents completed the NewMAP TBI within 11 days (subacute; SA) and 4 months (early chronic; EC) of injury, with a subset returning at 1 year (late chronic; LC). RESULTS: The test-retest reliability of common TBI characteristics [loss of consciousness (LOC), post-traumatic amnesia (PTA), retrograde amnesia, confusion/disorientation] and post-concussion symptoms (PCS) were examined across study visits. Aside from PTA, binary reporting (present/absent) for all TBI characteristics exhibited acceptable (≥0.60) test-retest reliability for both Qualifying and Remote TBIs across all three visits. In contrast, reliability for continuous data (exact duration) was generally unacceptable, with LOC and PCS meeting acceptable criteria at only half of the assessments. Transforming continuous self-report ratings into discrete categories based on injury severity resulted in acceptable reliability. Reliability was not strongly affected by the parent completing the NewMAP TBI. CONCLUSIONS: Categorical reporting of TBI characteristics in children and adolescents can aid clinicians in retrospectively obtaining reliable estimates of TBI severity up to a year post-injury. However, test-retest reliability is strongly impacted by the initial data distribution, selected statistical methods, and potentially by patient difficulty in distinguishing among conceptually similar medical concepts (i.e., PTA vs. confusion).


Subject(s)
Brain Injuries, Traumatic , Post-Concussion Syndrome , Adolescent , Amnesia, Retrograde , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnosis , Child , Confusion , Humans , Reproducibility of Results , Retrospective Studies
6.
Am J Obstet Gynecol ; 224(5): 498.e1-498.e10, 2021 05.
Article in English | MEDLINE | ID: mdl-33122028

ABSTRACT

BACKGROUND: Prior study of patients with urgency urinary incontinence by functional magnetic resonance imaging showed altered function in areas of the brain associated with interoception and salience and with attention. Our randomized controlled trial of hypnotherapy for urgency urinary incontinence demonstrated marked improvement in urgency urinary incontinence symptoms at 2 months. A subsample of these women with urgency urinary incontinence underwent functional magnetic resonance imaging before and after treatment. OBJECTIVE: This study aimed to determine if hypnotherapy treatment of urgency urinary incontinence compared with pharmacotherapy was associated with altered brain activation or resting connectivity on functional magnetic resonance imaging. STUDY DESIGN: A subsample of women participating in a randomized controlled trial comparing hypnotherapy vs pharmacotherapy for treatment of urgency urinary incontinence was evaluated with functional magnetic resonance imaging. Scans were obtained pretreatment and 8 to 12 weeks after treatment initiation. Brain activation during bladder filling and resting functional connectivity with an empty and partially filled bladder were assessed. Brain regions of interest were derived from those previously showing differences between healthy controls and participants with untreated urgency urinary incontinence in our prior work and included regions in the interoceptive and salience, ventral attentional, and dorsal attentional networks. RESULTS: After treatment, participants in both groups demonstrated marked improvement in incontinence episodes (P<.001). Bladder-filling task functional magnetic resonance imaging data from the combined groups (n=64, 30 hypnotherapy, 34 pharmacotherapy) demonstrated decreased activation of the left temporoparietal junction, a component of the ventral attentional network (P<.01) compared with baseline. Resting functional connectivity differed only with the bladder partially filled (n=54). Compared with pharmacotherapy, hypnotherapy participants manifested increased functional connectivity between the anterior cingulate cortex and the left dorsolateral prefrontal cortex, a component of the dorsal attentional network (P<.001). CONCLUSION: Successful treatment of urgency urinary incontinence with both pharmacotherapy and hypnotherapy was associated with decreased activation of the ventral (bottom-up) attentional network during bladder filling. This may be attributable to decreased afferent stimuli arising from the bladder in the pharmacotherapy group. In contrast, decreased ventral attentional network activation associated with hypnotherapy may be mediated by the counterbalancing effects of the dorsal (top-down) attentional network.


Subject(s)
Gyrus Cinguli/physiopathology , Hypnosis , Prefrontal Cortex/physiopathology , Urinary Incontinence, Urge/physiopathology , Urinary Incontinence, Urge/therapy , Adult , Aged , Female , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Middle Aged , Prefrontal Cortex/diagnostic imaging , Urinary Bladder/physiopathology , Urinary Incontinence, Urge/drug therapy
7.
J Int Neuropsychol Soc ; 27(7): 686-696, 2021 08.
Article in English | MEDLINE | ID: mdl-33243310

ABSTRACT

OBJECTIVE: This study aimed to examine the predictors of cognitive performance in patients with pediatric mild traumatic brain injury (pmTBI) and to determine whether group differences in cognitive performance on a computerized test battery could be observed between pmTBI patients and healthy controls (HC) in the sub-acute (SA) and the early chronic (EC) phases of injury. METHOD: 203 pmTBI patients recruited from emergency settings and 159 age- and sex-matched HC aged 8-18 rated their ongoing post-concussive symptoms (PCS) on the Post-Concussion Symptom Inventory and completed the Cogstate brief battery in the SA (1-11 days) phase of injury. A subset (156 pmTBI patients; 144 HC) completed testing in the EC (~4 months) phase. RESULTS: Within the SA phase, a group difference was only observed for the visual learning task (One-Card Learning), with pmTBI patients being less accurate relative to HC. Follow-up analyses indicated higher ongoing PCS and higher 5P clinical risk scores were significant predictors of lower One-Card Learning accuracy within SA phase, while premorbid variables (estimates of intellectual functioning, parental education, and presence of learning disabilities or attention-deficit/hyperactivity disorder) were not. CONCLUSIONS: The absence of group differences at EC phase is supportive of cognitive recovery by 4 months post-injury. While the severity of ongoing PCS and the 5P score were better overall predictors of cognitive performance on the Cogstate at SA relative to premorbid variables, the full regression model explained only 4.1% of the variance, highlighting the need for future work on predictors of cognitive outcomes.


Subject(s)
Brain Concussion , Learning Disabilities , Post-Concussion Syndrome , Brain Concussion/complications , Child , Cognition , Humans , Learning Disabilities/diagnosis , Learning Disabilities/etiology , Longitudinal Studies , Neuropsychological Tests , Post-Concussion Syndrome/diagnosis , Post-Concussion Syndrome/etiology
8.
Crit Care ; 25(1): 428, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34915927

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) and severe blood loss resulting in hemorrhagic shock (HS) represent leading causes of trauma-induced mortality, especially when co-occurring in pre-hospital settings where standard therapies are not readily available. The primary objective of this study was to determine if 17α-ethinyl estradiol-3-sulfate (EE-3-SO4) increases survival, promotes more rapid cardiovascular recovery, or confers neuroprotection relative to Placebo following TBI + HS. METHODS: All methods were approved by required regulatory agencies prior to study initiation. In this fully randomized, blinded preclinical study, eighty (50% females) sexually mature (190.64 ± 21.04 days old; 28.18 ± 2.72 kg) Yucatan swine were used. Sixty-eight animals received a closed-head, accelerative TBI followed by removal of approximately 40% of circulating blood volume. Animals were then intravenously administered EE-3-SO4 formulated in the vehicle at 5.0 mg/mL (dosed at 0.2 mL/kg) or Placebo (0.45% sodium chloride solution) via a continuous pump (0.2 mL/kg over 5 min). Twelve swine were included as uninjured Shams to further characterize model pathology and replicate previous findings. All animals were monitored for up to 5 h in the absence of any other life-saving measures (e.g., mechanical ventilation, fluid resuscitation). RESULTS: A comparison of Placebo-treated relative to Sham animals indicated evidence of acidosis, decreased arterial pressure, increased heart rate, diffuse axonal injury and blood-brain barrier breach. The percentage of animals surviving to 295 min post-injury was significantly higher for the EE-3-SO4 (28/31; 90.3%) relative to Placebo (24/33; 72.7%) cohort. EE-3-SO4 also restored pulse pressure more rapidly post-drug administration, but did not confer any benefits in terms of shock index. Primary blood-based measurements of neuroinflammation and blood brain breach were also null, whereas secondary measurements of diffuse axonal injury suggested a more rapid return to baseline for the EE-3-SO4 group. Survival status was associated with biological sex (female > male), as well as evidence of increased acidosis and neurotrauma independent of EE-3-SO4 or Placebo administration. CONCLUSIONS: EE-3-SO4 is efficacious in promoting survival and more rapidly restoring cardiovascular homeostasis following polytraumatic injuries in pre-hospital environments (rural and military) in the absence of standard therapies. Poly-therapeutic approaches targeting additional mechanisms (increased hemostasis, oxygen-carrying capacity, etc.) should be considered in future studies.


Subject(s)
Brain Injuries, Traumatic , Shock, Hemorrhagic , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Disease Models, Animal , Estradiol/analogs & derivatives , Female , Hemodynamics , Male , Neuroinflammatory Diseases , Resuscitation , Shock, Hemorrhagic/drug therapy , Swine
9.
J Magn Reson Imaging ; 52(6): 1701-1713, 2020 12.
Article in English | MEDLINE | ID: mdl-32592270

ABSTRACT

BACKGROUND: Physiological recovery from pediatric mild traumatic brain injury (pmTBI) as a function of age remains actively debated, with the majority of studies relying on subjective symptom report rather than objective markers of brain physiology. PURPOSE: To examine potential abnormalities in fractional amplitude of low-frequency fluctuations (fALFF) or regional homogeniety (ReHo) during resting-state fMRI following pmTBI. STUDY TYPE: Prospective cohort. POPULATION: Consecutively recruited pmTBI (N = 105; 8-18 years old) and age- and sex-matched healthy controls (HC; N = 113). FIELD STRENGTH/SEQUENCE: 3T multiecho gradient T1 -weighted and single-shot gradient-echo echo-planar imaging. ASSESSMENT: All pmTBI participants were assessed 1 week and 4 months postinjury (HC assessed at equivalent timepoints after the first visit). Comprehensive demographic, clinical, and cognitive batteries were performed in addition to primary investigation of fALFF and ReHo. All pmTBI were classified as "persistent" or "recovered" based on both assessment periods. STATISTICAL TESTS: Chi-square, nonparametric, and generalized linear models for demographic data. Generalized estimating equations for clinical and cognitive data. Voxelwise general linear models (AFNI's 3dMVM) for fALFF and ReHo assessment. RESULTS: Evidence of recovery was observed for some, but not all, clinical and cognitive measures at 4 months postinjury. fALFF was increased in the left striatum for pmTBI relative to HC both at 1 week and 4 months postinjury; whereas no significant group differences (P > 0.001) were observed for ReHo. Age-at-injury did not moderate either resting-state metric across groups. In contrast to analyses of pmTBI as a whole, there were no significant (P > 0.001) differences in either fALFF or ReHo in patients with persistent postconcussive symptoms compared to recovered patients and controls at 4 months postinjury. DATA CONCLUSIONS: Our findings suggest prolonged clinical recovery and alterations in the relative amplitude of resting-state fluctuations up to 4 months postinjury, but no clear relationship with age-at-injury or subjective symptom report. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: 2 J. MAGN. RESON. IMAGING 2020;52:1701-1713.


Subject(s)
Brain Concussion , Post-Concussion Syndrome , Adolescent , Brain/diagnostic imaging , Brain Concussion/diagnostic imaging , Child , Humans , Magnetic Resonance Imaging , Prospective Studies
10.
J Psychiatry Neurosci ; 45(6): 430-440, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32869961

ABSTRACT

Background: Functional underpinnings of cognitive control deficits in unbiased samples (i.e., all comers) of patients with psychotic spectrum disorders (PSD) remain actively debated. While many studies suggest hypofrontality in the lateral prefrontal cortex (PFC) and greater deficits during proactive relative to reactive control, few have examined the full hemodynamic response. Methods: Patients with PSD (n = 154) and healthy controls (n = 65) performed the AX continuous performance task (AX-CPT) during rapid (460 ms) functional neuroimaging and underwent full clinical characterization. Results: Behavioural results indicated generalized cognitive deficits (slower and less accurate) across proactive and reactive control conditions in patients with PSD relative to healthy controls. We observed a delayed/prolonged neural response in the left dorsolateral PFC, the sensorimotor cortex and the superior parietal lobe during proactive control for patients with PSD. These proactive hemodynamic abnormalities were better explained by negative rather than by positive symptoms or by traditional diagnoses according to the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision (DSM-IV-TR), with subsequent simulations unequivocally demonstrating how these abnormalities could be erroneously interpreted as hypoactivation. Conversely, true hypoactivity, unassociated with clinical symptoms or DSM-IV-TR diagnoses, was observed within the ventrolateral PFC during reactive control. Limitations: In spite of guidance for AX-CPT use in neuroimaging studies, one-third of patients with PSD could not perform the task above chance and were more clinically impaired. Conclusion: Current findings question the utility of the AX-CPT for neuroimaging-based appraisal of cognitive control across the full spectrum of patients with PSD. Previously reported lateral PFC "hypoactivity" during proactive control may be more indicative of a delayed/prolonged neural response, important for rehabilitative purposes. Negative symptoms may better explain certain behavioural and hemodynamic abnormalities in patients with PSD relative to DSM-IV-TR diagnoses.


Subject(s)
Executive Function/physiology , Functional Neuroimaging/standards , Parietal Lobe/physiopathology , Prefrontal Cortex/physiopathology , Psychomotor Performance/physiology , Psychotic Disorders/physiopathology , Sensorimotor Cortex/physiopathology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Parietal Lobe/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Psychotic Disorders/diagnostic imaging , Sensorimotor Cortex/diagnostic imaging , Young Adult
11.
J Head Trauma Rehabil ; 35(4): 270-278, 2020.
Article in English | MEDLINE | ID: mdl-32108710

ABSTRACT

OBJECTIVE: To evaluate diagnostic/prognostic implications of neurosensory testing during the subacute stage in patients with pediatric mild traumatic brain injury (pmTBI). SETTING: Recruitment from pediatric emergency department and urgent care clinics, assessment in a controlled environment. PARTICIPANTS: In total, 146 pmTBI patients evaluated 7.4 ± 2.3 days and approximately 4 months postinjury; 104 age/sex-matched healthy controls (HCs) at equivalent time points. DESIGN: Prospective cohort study. MAIN MEASURES: Neurosensory examination based on sequence of 10 established tests of vestibular-ocular, oculomotor, vestibulospinal, and visual functioning. RESULTS: The amount of symptom provocation (positive change from pretest symptomatology) was significantly increased in pmTBI relative to HCs on every subtest 1 week postinjury, as were deficits in monocular accommodative amplitude and King-Devick Test errors. However, symptom provocation did not meaningfully alter diagnostic sensitivity/specificity relative to more easily obtained pretest symptom ratings. Evidence of clinically significant symptom provocation 1 week postinjury improved sensitivity (Δ = +12.9%) of identifying patients with persistent postconcussive symptoms 4 months postinjury on an independent symptom measure. CONCLUSIONS: The diagnostic sensitivity/specificity of neurosensory testing in acutely concussed youth may be limited at 1 week postinjury as a function of natural recovery occurring in most emergency department cohorts. Neurosensory screening may have greater utility for identifying patients who experience delayed recovery.


Subject(s)
Brain Concussion , Post-Concussion Syndrome , Adolescent , Brain Concussion/complications , Brain Concussion/diagnosis , Emergency Service, Hospital , Female , Humans , Male , Post-Concussion Syndrome/diagnosis , Prospective Studies , Quality of Life
12.
Am J Drug Alcohol Abuse ; 46(3): 357-367, 2020 05 03.
Article in English | MEDLINE | ID: mdl-31730369

ABSTRACT

BACKGROUND: While attentional bias modification therapy (ABMT) alters drug-related behaviors in some substance users, results have been mixed in individuals with cocaine use disorders (CUD). OBJECTIVES: The current study examined whether ABMT affected brain functioning during independent measures of cue reactivity (i.e., cocaine versus food cues) and cognitive control (i.e., incongruent versus congruent trials), and whether brain activity was associated with baseline or post-intervention cocaine use. METHODS: 37 participants (62% male) were randomly assigned to ABMT or control therapy. Clinical and neuroimaging assessments occurred at baseline and immediately post-intervention, with additional clinical testing at 2 weeks and 3 months following intervention. Cocaine use was assessed through self-report. RESULTS: Slower reaction times and increased functional activation (prefrontal cortex, posterior parietal cortex) were observed for incongruent versus congruent stimuli and increased functional activation for cocaine relative to food videos (ventral striatum, dorsolateral prefrontal cortex and orbitofrontal cortex). The default-mode network (DMN) was not deactivated during exposure to cocaine videos. The degree of activation during cocaine relative to food cues was associated with baseline cocaine use (insula only) and reduction in use following treatment (insula and anterior DMN) above and beyond clinical variables. Cognitive control network activity was not associated with cocaine use at baseline or following treatment. ABMT therapy did not differentially affect cocaine use or functional activation during either task. CONCLUSION: Current results suggest a relationship between cue reactivity network activation and cocaine use, but question the efficacy of ABMT in changing brain function during cue reactivity or cognitive control tasks.


Subject(s)
Attentional Bias , Cocaine-Related Disorders/physiopathology , Cognition , Cues , Reaction Time , Adolescent , Adult , Behavior, Addictive , Brain/physiopathology , Conditioning, Psychological , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Parietal Lobe/physiopathology , Prefrontal Cortex/physiopathology , Young Adult
13.
Hum Brain Mapp ; 40(13): 3843-3859, 2019 09.
Article in English | MEDLINE | ID: mdl-31119818

ABSTRACT

It has been known for decades that head motion/other artifacts affect the blood oxygen level-dependent signal. Recent recommendations predominantly focus on denoising resting state data, which may not apply to task data due to the different statistical relationships that exist between signal and noise sources. Several blind-source denoising strategies (FIX and AROMA) and more standard motion parameter (MP) regression (0, 12, or 24 parameters) analyses were therefore compared across four sets of event-related functional magnetic resonance imaging (erfMRI) and block-design (bdfMRI) datasets collected with multiband 32- (repetition time [TR] = 460 ms) or older 12-channel (TR = 2,000 ms) head coils. The amount of motion varied across coil designs and task types. Quality control plots indicated small to moderate relationships between head motion estimates and percent signal change in both signal and noise regions. Blind-source denoising strategies eliminated signal as well as noise relative to MP24 regression; however, the undesired effects on signal depended both on algorithm (FIX > AROMA) and design (bdfMRI > erfMRI). Moreover, in contrast to previous results, there were minimal differences between MP12/24 and MP0 pipelines in both erfMRI and bdfMRI designs. MP12/24 pipelines were detrimental for a task with both longer block length (30 ± 5 s) and higher correlations between head MPs and design matrix. In summary, current results suggest that there does not appear to be a single denoising approach that is appropriate for all fMRI designs. However, even nonaggressive blind-source denoising approaches appear to remove signal as well as noise from task-related data at individual subject and group levels.


Subject(s)
Artifacts , Brain/physiology , Functional Neuroimaging/methods , Head Movements , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adolescent , Adult , Brain/diagnostic imaging , Female , Functional Neuroimaging/standards , Humans , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Male , Pattern Recognition, Visual/physiology , Psychomotor Performance/physiology , Research Design , Young Adult
14.
Hum Brain Mapp ; 40(18): 5370-5381, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31456319

ABSTRACT

Although much attention has been generated in popular media regarding the deleterious effects of pediatric mild traumatic brain injury (pmTBI), a paucity of empirical evidence exists regarding the natural course of biological recovery. Fifty pmTBI patients (12-18 years old) were consecutively recruited from Emergency Departments and seen approximately 1 week and 4 months post-injury in this prospective cohort study. Data from 53 sex- and age-matched healthy controls (HC) were also collected. Functional magnetic resonance imaging was obtained during proactive response inhibition and at rest, in conjunction with independent measures of resting cerebral blood flow. High temporal resolution imaging enabled separate modeling of neural responses for preparation and execution of proactive response inhibition. A priori predictions of failed inhibitory responses (i.e., hyperactivation) were observed in motor circuitry (pmTBI>HC) and sensory areas sub-acutely and at 4 months post-injury. Paradoxically, pmTBI demonstrated hypoactivation (HC>pmTBI) during target processing, along with decreased activation within prefrontal cognitive control areas. Functional connectivity within motor circuitry at rest suggested that deficits were limited to engagement during the inhibitory task, whereas normal resting cerebral perfusion ruled out deficits in basal perfusion. In conclusion, current results suggest blood oxygen-level dependent deficits during inhibitory control may exceed commonly held beliefs about physiological recovery following pmTBI, potentially lasting up to 4 months post-injury.


Subject(s)
Brain Concussion/diagnostic imaging , Brain Concussion/psychology , Cerebrovascular Circulation/physiology , Proactive Inhibition , Psychomotor Performance/physiology , Adolescent , Brain Concussion/physiopathology , Child , Female , Humans , Male , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology
15.
Hum Brain Mapp ; 40(3): 955-966, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30407681

ABSTRACT

The role of ventral versus dorsolateral prefrontal regions in instantiating proactive and reactive cognitive control remains actively debated, with few studies parsing cue versus probe-related activity. Rapid sampling (460 ms), long cue-probe delays, and advanced analytic techniques (deconvolution) were therefore used to quantify the magnitude and variability of neural responses during the AX Continuous Performance Test (AX-CPT; N = 46) in humans. Behavioral results indicated slower reaction times during reactive cognitive control (AY trials) in conjunction with decreased accuracy and increased variability for proactive cognitive control (BX trials). The anterior insula/ventrolateral prefrontal cortex (aI/VLPFC) was commonly activated across comparisons of both proactive and reactive cognitive control. In contrast, activity within the dorsomedial and dorsolateral prefrontal cortex was limited to reactive cognitive control. The instantiation of proactive cognitive control during the probe period was also associated with sparse neural activation relative to baseline, potentially as a result of the high degree of neural and behavioral variability observed across individuals. Specifically, the variability of the hemodynamic response function (HRF) within motor circuitry increased after the presentation of B relative to A cues (i.e., late in HRF) and persisted throughout the B probe period. Finally, increased activation of right aI/VLPFC during the cue period was associated with decreased motor circuit activity during BX probes, suggesting a possible role for the aI/VLPFC in proactive suppression of neural responses. Considered collectively, current results highlight the flexible role of the VLPFC in implementing cognitive control during the AX-CPT task but suggest large individual differences in proactive cognitive control strategies.


Subject(s)
Cognition/physiology , Prefrontal Cortex/physiology , Reaction Time/physiology , Adult , Echo-Planar Imaging/methods , Female , Humans , Male
16.
Cereb Cortex ; 27(5): 2831-2840, 2017 05 01.
Article in English | MEDLINE | ID: mdl-27166168

ABSTRACT

Parsing multisensory information from a complex external environment is a fundamental skill for all organisms. However, different organizational schemes currently exist for how multisensory information is processed in human (supramodal; organized by cognitive demands) versus primate (organized by modality/cognitive demands) lateral prefrontal cortex (LPFC). Functional magnetic resonance imaging results from a large cohort of healthy controls (N = 64; Experiment 1) revealed a rostral-caudal stratification of LPFC for auditory versus visual attention during an audio-visual Stroop task. The stratification existed in spite of behavioral and functional evidence of increased interference from visual distractors. Increased functional connectivity was also observed between rostral LPFC and auditory cortex across independent samples (Experiments 2 and 3) and multiple methodologies. In contrast, the caudal LPFC was preferentially activated during visual attention but functioned in a supramodal capacity for resolving multisensory conflict. The caudal LPFC also did not exhibit increased connectivity with visual cortices. Collectively, these findings closely mirror previous nonhuman primate studies suggesting that visual attention relies on flexible use of a supramodal cognitive control network in caudal LPFC whereas rostral LPFC is specialized for directing attention to auditory inputs (i.e., human auditory fields).


Subject(s)
Afferent Pathways/physiology , Attention , Auditory Perception/physiology , Cognition/physiology , Prefrontal Cortex/physiology , Visual Perception/physiology , Acoustic Stimulation , Adolescent , Adult , Afferent Pathways/diagnostic imaging , Analysis of Variance , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Oxygen , Photic Stimulation , Prefrontal Cortex/diagnostic imaging , Young Adult
17.
Hum Brain Mapp ; 37(2): 745-55, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26598791

ABSTRACT

Functional magnetic resonance imaging (fMRI) of the blood oxygen level dependent (BOLD) response has commonly been used to investigate the neuropathology underlying cognitive and sensory deficits in patients with schizophrenia (SP) by examining the positive phase of the BOLD response, assuming a fixed shape for the hemodynamic response function (HRF). However, the individual phases (positive and post-stimulus undershoot (PSU)) of the HRF may be differentially affected by a variety of underlying pathologies. The current experiment used a multisensory detection task with a rapid event-related fMRI paradigm to investigate both the positive and PSU phases of the HRF in SP and healthy controls (HC). Behavioral results indicated no significant group differences during task performance. Analyses that examined the shape of the HRF indicated two distinct group differences. First, SP exhibited a reduced and/or prolonged PSU following normal task-related positive BOLD activation in secondary auditory and visual sensory areas relative to HC. Second, SP did not show task-induced deactivation in the anterior node of the default-mode network (aDMN) relative to HC. In contrast, when performing traditional analyses that focus on the positive phase, there were no group differences. Interestingly, the magnitude of the PSU in secondary auditory and visual areas was positively associated with the magnitude of task-induced deactivation within the aDMN, suggesting a possible common neural mechanism underlying both of these abnormalities (failure in neural inhibition). Results are consistent with recent views that separate neural processes underlie the two phases of the HRF and that they are differentially affected in SP. Hum Brain Mapp 37:745-755, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Auditory Perception/physiology , Brain/physiopathology , Cerebrovascular Circulation/physiology , Schizophrenia/physiopathology , Visual Perception/physiology , Adult , Brain Mapping , Cohort Studies , Female , Humans , Magnetic Resonance Imaging/methods , Male , Neural Pathways/physiopathology , Neuropsychological Tests , Oxygen/blood , Schizophrenic Psychology
18.
Am J Obstet Gynecol ; 215(4): 449.e1-449.e17, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27173081

ABSTRACT

BACKGROUND: Treatment of urgency urinary incontinence has focused on pharmacologically treating detrusor overactivity. Recent recognition that altered perception of internal stimuli (interoception) plays a role in urgency urinary incontinence suggests that exploration of abnormalities of brain function in this disorder could lead to better understanding of urgency incontinence and its treatment. OBJECTIVE: We sought to: (1) evaluate the relationship between bladder filling, perceived urgency, and activation at brain sites within the interoceptive network in urgency urinary incontinence; (2) identify coactivation of other brain networks that could affect interoception during bladder filling in urgency incontinence; and (3) demonstrate interaction between these sites prior to bladder filling by evaluating their resting-state connectivity. STUDY DESIGN: We performed an observational cohort study using functional magnetic resonance imaging to compare brain function in 53 women with urgency urinary incontinence and 20 controls. Whole-brain voxelwise analyses of covariance were performed to examine differences in functional brain activation between groups during a task consisting of bladder filling, hold (static volume), and withdrawal phases. The task was performed at 3 previously established levels of baseline bladder volume, the highest exceeding strong desire to void volume. All women continuously rated their urge on a 0- to 10-point Likert scale throughout the task and a mixed measures analysis of variance was used to test for differences in urge ratings. Empirically derived regions of interest from analysis of activation during the task were used as seeds for examining group differences in resting-state functional connectivity. RESULTS: In both urgency urinary incontinent participants and controls, changes in urge ratings were greatest during bladder filling initiated from a high baseline bladder volume and urgency incontinent participants' rating changes were greater than controls. During this bladder-filling phase urgency incontinent participant's activation of the interoceptive network was greater than controls, including in the left insula and the anterior and middle cingulate cortex. Urgency incontinent participant's activation was also greater than controls at sites in the ventral attention network and posterior default mode network. Urgency incontinent participant's connectivity was greater than controls between a middle cingulate seed point and the dorsal attention network, a "top-down" attentional network. Control connectivity was greater between the midcingulate seed point and the ventral attention network, a "bottom-up" attentional network. CONCLUSION: Increasing urge was associated with greater urgency incontinent participant than control activation of the interoceptive network and activation in networks that are determinants of self-awareness (default mode network) and of response to unexpected external stimuli (ventral attention network). Differences in connectivity between interoceptive networks and opposing attentional networks (ventral attention network vs dorsal attention network) were present even before bladder filling (in the resting state). These findings are strong evidence for a central nervous system component of urgency urinary incontinence that could be mediated by brain-directed therapies.


Subject(s)
Brain Mapping , Interoception/physiology , Urinary Bladder/physiopathology , Urinary Incontinence, Urge/diagnostic imaging , Urinary Incontinence, Urge/physiopathology , Adult , Aged , Attention/physiology , Case-Control Studies , Cohort Studies , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Humans , Magnetic Resonance Imaging , Middle Aged
19.
J Psychiatry Neurosci ; 41(5): 312-21, 2016 08.
Article in English | MEDLINE | ID: mdl-26883319

ABSTRACT

BACKGROUND: Previous studies of response inhibition in patients with schizophrenia have focused on reactive inhibition tasks (e.g., stop-signal, go/no-go), primarily observing lateral prefrontal cortex abnormalities. However, recent studies suggest that purposeful and sustained (i.e., proactive) inhibition may also be affected in these patients. METHODS: Patients with chronic schizophrenia and healthy controls underwent fMRI while inhibiting motor responses during multisensory (audiovisual) stimulation. Resting state data were also collected. RESULTS: We included 37 patients with schizophrenia and 37 healthy controls in our study. Both controls and patients with schizophrenia successfully inhibited the majority of overt motor responses. Functional results indicated basic inhibitory failure in the lateral premotor and sensorimotor cortex, with opposing patterns of positive (schizophrenia) versus negative (control) activation. Abnormal activity was associated with independently assessed signs of psychomotor retardation. Patients with schizophrenia also exhibited unique activation of the pre-supplementary motor area (pre-SMA)/SMA and precuneus relative to baseline as well as a failure to deactivate anterior nodes of the default mode network. Independent resting-state connectivity analysis indicated reduced connectivity between anterior (task results) and posterior regions of the sensorimotor cortex for patients as well as abnormal connectivity between other regions (cerebellum, thalamus, posterior cingulate gyrus and visual cortex). LIMITATIONS: Aside from rates of false-positive responses, true proactive response inhibition tasks do not provide behavioural metrics that can be independently used to quantify task performance. CONCLUSION: Our results suggest that basic cortico-cortico and intracortical connections between the sensorimotor cortex and adjoining regions are impaired in patients with schizophrenia and that these impaired connections contribute to inhibitory failures (i.e., a positive rather than negative hemodynamic response).


Subject(s)
Auditory Perception/physiology , Motor Activity/physiology , Proactive Inhibition , Schizophrenia/physiopathology , Sensorimotor Cortex/physiopathology , Visual Perception/physiology , Adult , Brain Mapping , Chronic Disease , Female , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Neuropsychological Tests , Rest , Schizophrenia/diagnostic imaging , Schizophrenic Psychology , Sensorimotor Cortex/diagnostic imaging
20.
Am J Drug Alcohol Abuse ; 42(4): 459-68, 2016 07.
Article in English | MEDLINE | ID: mdl-27184297

ABSTRACT

BACKGROUND: Attentional bias (i.e., differences in reaction time between drug and neutral cues) has been associated with a variety of drug-use behaviors (e.g., craving, abstinence). Reduction of bias may ultimately reduce use. OBJECTIVE: The current study examined whether attentional bias modification therapy (ABMT) reduced the frequency of drug use behaviors in individuals with cocaine use disorder (CUD). METHOD: Participants (n = 37) were randomly assigned to ABMT or control therapy, which systematically varied how frequently probes replaced neutral (ABMT = 100%; control therapy = 50%) relative to drug stimuli. Each intervention included 5 training sessions comprising a total of 2640 trials over 4 weeks. Clinical assessments occurred at baseline, post-intervention, 2 weeks and 3 months posttreatment. RESULTS: There were no baseline differences between groups on drug-use behaviors or other clinical measures. Contrary to predictions, both groups exhibited slower rather than faster reaction times for cocaine stimuli (p = 0.005) at baseline, with no relationship between bias and baseline measures of drug-use behavior. CONCLUSIONS: ABMT was not more effective than our control therapy at reducing attentional bias, reducing craving or changing other drug use behaviors. Current results suggest additional replication studies are needed to assess ABMT's efficacy in reducing drug-use behaviors in CUD.


Subject(s)
Attentional Bias , Behavior Therapy , Cocaine-Related Disorders/therapy , Adult , Behavior, Addictive/therapy , Female , Humans , Male , Reaction Time , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL