Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(34): e2220269120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37579172

ABSTRACT

The vascular endothelium from individual organs is functionally specialized, and it displays a unique set of accessible molecular targets. These serve as endothelial cell receptors to affinity ligands. To date, all identified vascular receptors have been proteins. Here, we show that an endothelial lung-homing peptide (CGSPGWVRC) interacts with C16-ceramide, a bioactive sphingolipid that mediates several biological functions. Upon binding to cell surfaces, CGSPGWVRC triggers ceramide-rich platform formation, activates acid sphingomyelinase and ceramide production, without the associated downstream apoptotic signaling. We also show that the lung selectivity of CGSPGWVRC homing peptide is dependent on ceramide production in vivo. Finally, we demonstrate two potential applications for this lipid vascular targeting system: i) as a bioinorganic hydrogel for pulmonary imaging and ii) as a ligand-directed lung immunization tool against COVID-19. Thus, C16-ceramide is a unique example of a lipid-based receptor system in the lung vascular endothelium targeted in vivo by circulating ligands such as CGSPGWVRC.


Subject(s)
COVID-19 , Humans , Ligands , COVID-19/metabolism , Ceramides/metabolism , Lung/metabolism , Endothelium, Vascular/metabolism , Receptors, Cell Surface/metabolism , Carrier Proteins/metabolism , Sphingomyelin Phosphodiesterase/metabolism
2.
Mol Biol Evol ; 39(5)2022 05 03.
Article in English | MEDLINE | ID: mdl-35511693

ABSTRACT

Evaluation of immunogenic epitopes for universal vaccine development in the face of ongoing SARS-CoV-2 evolution remains a challenge. Herein, we investigate the genetic and structural conservation of an immunogenically relevant epitope (C662-C671) of spike (S) protein across SARS-CoV-2 variants to determine its potential utility as a broad-spectrum vaccine candidate against coronavirus diseases. Comparative sequence analysis, structural assessment, and molecular dynamics simulations of C662-C671 epitope were performed. Mathematical tools were employed to determine its mutational cost. We found that the amino acid sequence of C662-C671 epitope is entirely conserved across the observed major variants of SARS-CoV-2 in addition to SARS-CoV. Its conformation and accessibility are predicted to be conserved, even in the highly mutated Omicron variant. Costly mutational rate in the context of energy expenditure in genome replication and translation can explain this strict conservation. These observations may herald an approach to developing vaccine candidates for universal protection against emergent variants of coronavirus.


Subject(s)
COVID-19 , Vaccines , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
3.
Bioessays ; 43(7): e2000339, 2021 07.
Article in English | MEDLINE | ID: mdl-33751590

ABSTRACT

Here we review and discuss the link between regeneration capacity and tumor suppression comparing mammals (embryos versus adults) with highly regenerative vertebrates. Similar to mammal embryo morphogenesis, in amphibians (essentially newts and salamanders) the reparative process relies on a precise molecular and cellular machinery capable of sensing abnormal signals and actively reprograming or eliminating them. As the embryo's evil twin, tumor also retains common functional attributes. The immune system plays a pivotal role in maintaining a physiological balance to provide surveillance against tumor initiation or to support its initiation and progression. We speculate that susceptibility to cancer development in adult mammals may be determined by the loss of an advanced regenerative capability during evolution and believe that gaining mechanistic insights into how regenerative capacity linked to tumor suppression is postnatally lost in mammals might illuminate an as yet unrecognized route to cancer treatment.


Subject(s)
Amphibians , Neoplasms , Animals , Biology , Embryo, Mammalian , Humans , Mammals , Neoplasms/genetics
4.
Langmuir ; 38(45): 13983-13994, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36318182

ABSTRACT

Delivery of small molecules and anticancer agents to malignant cells or specific regions within a tumor is limited by penetration depth and poor spatial drug distribution, hindering anticancer efficacy. Herein, we demonstrate control over gold nanoparticle (GNP) penetration and spatial distribution across solid tumors by administering GNPs with different surface chemistries at a constant injection rate via syringe pump. A key finding in this study is the discovery of different zone-specific accumulation patterns of intratumorally injected nanoparticles dependent on surface functionalization. Computed tomography (CT) imaging performed in vivo of C57BL/6 mice harboring Lewis lung carcinoma (LLC) tumors on their flank and gross visualization of excised tumors consistently revealed that intratumorally administered citrate-GNPs accumulate in particle clusters in central areas of the tumor, while GNPs functionalized with thiolated phosphothioethanol (PTE-GNPs) and thiolated polyethylene glycol (PEG-GNPs) regularly accumulate in the tumor periphery. Further, PEG functionalization resulted in larger tumoral surface coverage than PTE, reaching beyond the outer zone of the tumor mass and into the surrounding stroma. To understand the dissimilarities in spatiotemporal evolution across the different GNP surface chemistries, we modeled their intratumoral transport with reaction-diffusion equations. Our results suggest that GNP surface passivation affects nanoparticle reactivity with the tumor microenvironment, leading to differential transport behavior across tumor zones. The present study provides a mechanistic understanding of the factors affecting spatiotemporal distribution of nanoparticles in the tumor. Our proof of concept of zonal delivery within the tumor may prove useful for directing anticancer therapies to regions of biomarker overexpression.


Subject(s)
Metal Nanoparticles , Nanoparticles , Animals , Mice , Gold , Mice, Inbred C57BL , Polyethylene Glycols , Citric Acid
5.
Pharm Res ; 39(3): 511-528, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35294699

ABSTRACT

PURPOSE: Downregulation of miRNA-22 in triple-negative breast cancer (TNBC) is associated with upregulation of eukaryotic elongation 2 factor kinase (eEF2K) protein, which regulates tumor growth, chemoresistance, and tumor immunosurveillance. Moreover, exogenous administration of miRNA-22, loaded in nanoparticles to prevent degradation and improve tumor delivery (termed miRNA-22 nanotherapy), to suppress eEF2K production has shown potential as an investigational therapeutic agent in vivo. METHODS: To evaluate the translational potential of miRNA-22 nanotherapy, we developed a multiscale mechanistic model, calibrated to published in vivo data and extrapolated to the human scale, to describe and quantify the pharmacokinetics and pharmacodynamics of miRNA-22 in virtual patient populations. RESULTS: Our analysis revealed the dose-response relationship, suggested optimal treatment frequency for miRNA-22 nanotherapy, and highlighted key determinants of therapy response, from which combination with immune checkpoint inhibitors was identified as a candidate strategy for improving treatment outcomes. More importantly, drug synergy was identified between miRNA-22 and standard-of-care drugs against TNBC, providing a basis for rational therapeutic combinations for improved response CONCLUSIONS: The present study highlights the translational potential of miRNA-22 nanotherapy for TNBC in combination with standard-of-care drugs.


Subject(s)
MicroRNAs , Nanoparticles , Triple Negative Breast Neoplasms , Cell Line, Tumor , Drug Synergism , Humans , MicroRNAs/administration & dosage , MicroRNAs/genetics , Nanoparticles/administration & dosage , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
6.
Int J Clin Pharmacol Ther ; 60(6): 253-263, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35445658

ABSTRACT

OBJECTIVE: To develop a physiologically based pharmacokinetic (PBPK) model for amiloride, an acid-sensing ion channel (ASIC) antagonist, and to simulate its pharmacokinetics in plasma and the central nervous system following intranasal administration in a virtual human population. MATERIALS AND METHODS: We first developed a PBPK model of amiloride after oral administration and optimized the model using data from five clinical studies. Next, we added a nasal compartment to the amiloride oral PBPK model and parameterized using data from previous clinical studies. We simulated amiloride's pharmacokinetics in plasma, brain, and cerebrospinal fluid (CSF) after intranasal administration of amiloride at various doses in a virtual human population. RESULTS: The target amiloride concentration in the central nervous system required for maximal ASIC inhibition was achieved with a 75-mg intranasal amiloride dose. However, this finding is based on simulations performed using a mathematical model and needs to be further validated with appropriate clinical data. CONCLUSION: The nasal PBPK model of amiloride could be used to design future clinical studies and allow for successful clinical translation of intranasal amiloride formulation.


Subject(s)
Acid Sensing Ion Channel Blockers , Amiloride , Anxiety Disorders , Acid Sensing Ion Channel Blockers/administration & dosage , Acid Sensing Ion Channel Blockers/pharmacokinetics , Acid Sensing Ion Channels/drug effects , Administration, Intranasal , Administration, Oral , Amiloride/administration & dosage , Amiloride/pharmacokinetics , Anxiety Disorders/drug therapy , Computer Simulation , Humans , Models, Biological
7.
J Theor Biol ; 493: 110193, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32119968

ABSTRACT

We present a physiologically-based pharmacokinetic modeling platform capable of simulating the biodistribution of different therapeutic agents, including cells, their interactions within the immune system, redistribution across lymphoid compartments, and infiltration into tumor tissues. This transport-based platform comprises a distinctive implementation of a tumor compartment with spatial heterogeneity which enables the modeling of tumors of different size, necrotic state, and agent infiltration capacity. We provide three validating and three exploratory examples that illustrate the capabilities of the proposed approach. The results show that the model can recapitulate immune cell balance across different compartments, respond to antigen stimulation, simulate immune vaccine effects, and immune cell infiltration to tumors. Based on the results, the model can be used to study problems pertinent to current immunotherapies and has the potential to assist medical techniques that rely on the transport of biological species.


Subject(s)
Immunotherapy , Neoplasms , Humans , Lymphatic System , Neoplasms/therapy , Tissue Distribution
8.
Small ; 15(46): e1903747, 2019 11.
Article in English | MEDLINE | ID: mdl-31565854

ABSTRACT

Rapid sequestration and prolonged retention of intravenously injected nanoparticles by the liver and spleen (reticuloendothelial system (RES)) presents a major barrier to effective delivery to the target site and hampers clinical translation of nanomedicine. Inspired by biological macromolecular drugs, synthesis of ultrasmall (diameter ≈12-15 nm) porous silica nanoparticles (UPSNs), capable of prolonged plasma half-life, attenuated RES sequestration, and accelerated hepatobiliary clearance, is reported. The study further investigates the effect of tumor vascularization on uptake and retention of UPSNs in two mouse models of triple negative breast cancer with distinctly different microenvironments. A semimechanistic mathematical model is developed to gain mechanistic insights into the interactions between the UPSNs and the biological entities of interest, specifically the RES. Despite similar systemic pharmacokinetic profiles, UPSNs demonstrate strikingly different tumor responses in the two models. Histopathology confirms the differences in vasculature and stromal status of the two models, and corresponding differences in the microscopic distribution of UPSNs within the tumors. The studies demonstrate the successful application of multidisciplinary and complementary approaches, based on laboratory experimentation and mathematical modeling, to concurrently design optimized nanomaterials, and investigate their complex biological interactions, in order to drive innovation and translation.


Subject(s)
Nanoparticles/chemistry , Neovascularization, Pathologic/pathology , Particle Size , Silicon Dioxide/chemistry , Triple Negative Breast Neoplasms/blood supply , Animals , Cell Line, Tumor , Copper Radioisotopes/pharmacokinetics , Female , Humans , Mice, Inbred BALB C , Models, Biological , Nanoparticles/ultrastructure , Porosity , Tissue Distribution , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
9.
Biomed Microdevices ; 21(2): 40, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30949850

ABSTRACT

Cancer continues to be among the leading healthcare problems worldwide, and efforts continue not just to find better drugs, but also better drug delivery methods. The need for delivering cytotoxic agents selectively to cancerous cells, for improved safety and efficacy, has triggered the application of nanotechnology in medicine. This effort has provided drug delivery systems that can potentially revolutionize cancer treatment. Nanocarriers, due to their capacity for targeted drug delivery, can shift the balance of cytotoxicity from healthy to cancerous cells. The field of cancer nanomedicine has made significant progress, but challenges remain that impede its clinical translation. Several biophysical barriers to the transport of nanocarriers to the tumor exist, and a much deeper understanding of nano-bio interactions is necessary to change the status quo. Mathematical modeling has been instrumental in improving our understanding of the physicochemical and physiological underpinnings of nanomaterial behavior in biological systems. Here, we present a comprehensive review of literature on mathematical modeling works that have been and are being employed towards a better understanding of nano-bio interactions for improved tumor delivery efficacy.


Subject(s)
Models, Biological , Nanomedicine , Neoplasms , Animals , Biological Transport , Humans , Nanoparticles/chemistry , Neoplasms/metabolism , Tissue Distribution
10.
Proc Natl Acad Sci U S A ; 113(7): 1877-82, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26839407

ABSTRACT

A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Disease Models, Animal , Multimodal Imaging , Nanotechnology , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/drug therapy , Animals , Drug Delivery Systems , Female , Infrared Rays , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Surface Plasmon Resonance
11.
PLoS Comput Biol ; 12(6): e1004969, 2016 06.
Article in English | MEDLINE | ID: mdl-27286441

ABSTRACT

AUTHOR SUMMARY: Cancer treatment efficacy can be significantly enhanced through the elution of drug from nano-carriers that can temporarily stay in the tumor vasculature. Here we present a relatively simple yet powerful mathematical model that accounts for both spatial and temporal heterogeneities of drug dosing to help explain, examine, and prove this concept. We find that the delivery of systemic chemotherapy through a certain form of nano-carriers would have enhanced tumor kill by a factor of 2 to 4 over the standard therapy that the patients actually received. We also find that targeting blood volume fraction (a parameter of the model) through vascular normalization can achieve more effective drug delivery and tumor kill. More importantly, this model only requires a limited number of parameters which can all be readily assessed from standard clinical diagnostic measurements (e.g., histopathology and CT). This addresses an important challenge in current translational research and justifies further development of the model towards clinical translation.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Models, Biological , Neoplasms/drug therapy , Animals , Computational Biology , Computer Simulation , Drug Carriers/pharmacokinetics , Drug Carriers/therapeutic use , Female , Mice , Mice, Inbred BALB C , Nanoparticles/therapeutic use , Spatio-Temporal Analysis
12.
Int J Pharm ; 660: 124289, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38825171

ABSTRACT

The transdermal delivery of naloxone for opioid overdose emergency purposes is a challenge due to its poor rate of diffusion through the layers of skin. This results in delayed delivery of an insufficient amount of the drug within minimal time as is desired to save lives. The ability of dissolving polymeric microneedles to shorten the lag time significantly has been explored and shown to have prospects in terms of the transdermal delivery of naloxone. This is an option that offers critical advantages to the ongoing opioid crisis, including ease of distribution and easy administration, with little to no need for intervention by clinicians. Nonetheless, this approach by itself needs augmentation to meet pharmacokinetic delivery attributes desired for a viable clinical alternative to existing market dosage forms. In this study, we report the success of an optimized iontophoresis-coupled naloxone loaded dissolving microneedle patch which had facilitated a 12- fold increase in average cumulative permeation and a 6-fold increase in drug flux over a conventional dissolving microneedle patch within 60 min of application (p < 0.05). This translates to a 30 % decrease in dose requirement in a mechanistically predicted microneedle patch established to be able to achieve the desired early plasma concentration time profile needed in an opioid overdose emergency. Applying a predictive mathematical model, we describe an iontophoresis-coupled microneedle patch design capable of meeting the desired pharmacokinetic profile for a viable naloxone delivery form through skin.


Subject(s)
Administration, Cutaneous , Iontophoresis , Naloxone , Narcotic Antagonists , Needles , Skin Absorption , Transdermal Patch , Naloxone/administration & dosage , Naloxone/pharmacokinetics , Iontophoresis/methods , Narcotic Antagonists/administration & dosage , Narcotic Antagonists/pharmacokinetics , Animals , Drug Delivery Systems , Polymers/chemistry , Microinjections/methods , Male , Skin/metabolism , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacokinetics
13.
Res Sq ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38586046

ABSTRACT

We present a study where predictive mechanistic modeling is used in combination with deep learning methods to predict individual patient survival probabilities under immune checkpoint inhibitor (ICI) therapy. This hybrid approach enables prediction based on both measures that are calculable from mechanistic models (but may not be directly measurable in the clinic) and easily measurable quantities or characteristics (that are not always readily incorporated into predictive mechanistic models). The mechanistic model we have applied here can predict tumor response from CT or MRI imaging based on key mechanisms underlying checkpoint inhibitor therapy, and in the present work, its parameters were combined with readily-available clinical measures from 93 patients into a hybrid training set for a deep learning time-to-event predictive model. Analysis revealed that training an artificial neural network with both mechanistic modeling-derived and clinical measures achieved higher per-patient predictive accuracy based on event-time concordance, Brier score, and negative binomial log-likelihood-based criteria than when only mechanistic model-derived values or only clinical data were used. Feature importance analysis revealed that both clinical and model-derived parameters play prominent roles in neural network decision making, and in increasing prediction accuracy, further supporting the advantage of our hybrid approach. We anticipate that many existing mechanistic models may be hybridized with deep learning methods in a similar manner to improve predictive accuracy through addition of additional data that may not be readily implemented in mechanistic descriptions.

14.
medRxiv ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38559070

ABSTRACT

Elevated microRNA-155 (miR-155) expression in non-small-cell lung cancer (NSCLC) promotes cisplatin resistance and negatively impacts treatment outcomes. However, miR-155 can also boost anti-tumor immunity by suppressing PD-L1 expression. We developed a multiscale mechanistic model, calibrated with in vivo data and then extrapolated to humans, to investigate the therapeutic effects of nanoparticle-delivered anti-miR-155 in NSCLC, alone or in combination with standard-of-care drugs. Model simulations and analyses of the clinical scenario revealed that monotherapy with anti-miR-155 at a dose of 2.5 mg/kg administered once every three weeks has substantial anti-cancer activity. It led to a median progression-free survival (PFS) of 6.7 months, which compared favorably to cisplatin and immune checkpoint inhibitors. Further, we explored the combinations of anti-miR-155 with standard-of-care drugs, and found strongly synergistic two- and three-drug combinations. A three-drug combination of anti-miR-155, cisplatin, and pembrolizumab resulted in a median PFS of 13.1 months, while a two-drug combination of anti-miR-155 and cisplatin resulted in a median PFS of 11.3 months, which emerged as a more practical option due to its simple design and cost-effectiveness. Our analyses also provided valuable insights into unfavorable dose ratios for drug combinations, highlighting the need for optimizing dose regimen to prevent antagonistic effects. Thus, this work bridges the gap between preclinical development and clinical translation of anti-miR-155 and unravels the potential of anti-miR-155 combination therapies in NSCLC.

15.
Cancers (Basel) ; 15(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37958456

ABSTRACT

PURPOSE: Cell migration is a critical driver of metastatic tumor spread, contributing significantly to cancer-related mortality. Yet, our understanding of the underlying mechanisms remains incomplete. METHODS: In this study, a wound healing assay was employed to investigate cancer cell migratory behavior, with the aim of utilizing migration as a biomarker for invasiveness. To gain a comprehensive understanding of this complex system, we developed a computational model based on cellular automata (CA) and rigorously calibrated and validated it using in vitro data, including both tumoral and non-tumoral cell lines. Harnessing this CA-based framework, extensive numerical experiments were conducted and supported by local and global sensitivity analyses in order to identify the key biological parameters governing this process. RESULTS: Our analyses led to the formulation of a power law equation derived from just a few input parameters that accurately describes the governing mechanism of wound healing. This groundbreaking research provides a powerful tool for the pharmaceutical industry. In fact, this approach proves invaluable for the discovery of novel compounds aimed at disrupting cell migration, assessing the efficacy of prospective drugs designed to impede cancer invasion, and evaluating the immune system's responses.

16.
Article in English | MEDLINE | ID: mdl-36148978

ABSTRACT

The field of oncology has transformed with the advent of immunotherapies. The standard of care for multiple cancers now includes novel drugs that target key checkpoints that function to modulate immune responses, enabling the patient's immune system to elicit an effective anti-tumor response. While these immune-based approaches can have dramatic effects in terms of significantly reducing tumor burden and prolonging survival for patients, the therapeutic approach remains active only in a minority of patients and is often not durable. Multiple biological investigations have identified key markers that predict response to the most common form of immunotherapy-immune checkpoint inhibitors (ICI). These biomarkers help enrich patients for ICI but are not 100% predictive. Understanding the complex interactions of these biomarkers with other pathways and factors that lead to ICI resistance remains a major goal. Principles of oncophysics-the idea that cancer can be described as a multiscale physical aberration-have shown promise in recent years in terms of capturing the essence of the complexities of ICI interactions. Here, we review the biological knowledge of mechanisms of ICI action and how these are incorporated into modern oncophysics-based mathematical models. Building on the success of oncophysics-based mathematical models may help to discover new, rational methods to engineer immunotherapy for patients in the future. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Immunotherapy/methods
17.
Drug Deliv Transl Res ; 13(1): 320-338, 2023 01.
Article in English | MEDLINE | ID: mdl-35879533

ABSTRACT

Naloxone, an FDA-approved opioid inhibitor, used to reverse opioid overdose complications has up till date faced challenges associated with its delivery. Limitations include the use of invasive delivery forms and the need for frequent redosing due to its short half-life. The goal of the current study was to design a transdermal rapidly dissolving polymeric microneedle (MN) patch with delivery and pharmacokinetic properties comparable to that seen with the commercially available NAL products, eliminating their delivery limitations. Patches of varying dimensions (500 µm; 100 array,800 µm; 100array, and 600 µm; 225 array) were fabricated to evaluate the effect of increasing MN length, and density (no. of needles/unit area) on drug release. Drug dose in each of these patches was 17.89 ± 0.23 mg, 17.2 ± 0.77 mg, and 17.8 ± 1.01 mg, respectively. Furthermore, the insertion efficiency of each of the MN patches was 94 ± 4.8%, 90.6 ± 1.69%, and 96 ± 1.29%, respectively. Compared to passive permeation, a reduced lag time of about 5-15 min was observed with a significant drug flux of 15.09 ± 7.68 g[Formula: see text]/cm2/h seen in the first 1 h (p < 0.05) with the array of 100 needles (500 µm long). Over 24 h, a four and ten-fold increase in permeation was seen with the longer length and larger density MN patch, respectively, when compared to the 500 µm (100 array) patch. Model simulations and analyses revealed the significance of needle base diameter and needle count in improving systemic pharmacokinetics of NAL.


Subject(s)
Naloxone , Opiate Overdose , Humans , Analgesics, Opioid
18.
Cancers (Basel) ; 15(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067364

ABSTRACT

PURPOSE: In recent years, mathematical models have become instrumental in cancer research, offering insights into tumor growth dynamics, and guiding the development of pharmacological strategies. These models, encompassing diverse biological and physical processes, are increasingly used in clinical settings, showing remarkable predictive precision for individual patient outcomes and therapeutic responses. METHODS: Motivated by these advancements, our study introduces an innovative in silico model for simulating tumor growth and invasiveness. The automated hybrid cell emulates critical tumor cell characteristics, including rapid proliferation, heightened motility, reduced cell adhesion, and increased responsiveness to chemotactic signals. This model explores the potential evolution of 3D tumor spheroids by manipulating biological parameters and microenvironment factors, focusing on nutrient availability. RESULTS: Our comprehensive global and local sensitivity analysis reveals that tumor growth primarily depends on cell duplication speed and cell-to-cell adhesion, rather than external chemical gradients. Conversely, tumor invasiveness is predominantly driven by chemotaxis. These insights illuminate tumor development mechanisms, providing vital guidance for effective strategies against tumor progression. Our proposed model is a valuable tool for advancing cancer biology research and exploring potential therapeutic interventions.

19.
Article in English | MEDLINE | ID: mdl-38082979

ABSTRACT

Polymeric microneedle (MN)-based patches are an efficient, non-invasive, and painless means of drug delivery through the skin to systemic circulation. The design of these MN-based patches can be customized for various drug delivery applications, particularly modified release of drugs. In this study, we developed a mathematical model of drug delivery via MN-based patches to study the effect of patch design properties on drug delivery kinetics and systemic pharmacokinetics (PK). We calibrated the model against two representative formulations: a rapid release patch of naloxone and a sustained-release patch of levonorgestrel. The model was then applied to assess the relative significance of model parameters in governing systemic PK of drugs and obtain optimal design parameters to achieve therapeutically meaningful drug levels in a clinical setting. We identified the importance of drug loading fraction, MN base radius, and MN height as the key control parameters responsible for drug PK.Clinical Relevance- Through the application of modeling and simulation, we can improve drug delivery from MN-based patches by identifying optimal design parameters to support the clinical translation of these novel drug delivery systems.


Subject(s)
Needles , Skin , Microinjections , Administration, Cutaneous , Pharmaceutical Preparations , Drug Delivery Systems
20.
Article in English | MEDLINE | ID: mdl-38083518

ABSTRACT

To improve treatment outcomes in non-small cell lung cancer (NSCLC), it is crucial to identify treatment strategies with the potential to exhibit drug synergism. This can lower the required effective dose, reducing exposure to drugs and associated toxicities, while improving treatment efficacy. In previous studies, drugs targeting the microRNA-155 or PD-L1 have been promising in restraining NSCLC tumor growth. We have developed a mathematical model that simulates the in vivo pharmacokinetics and pharmacodynamics of the novel nanoparticle-delivered anti-microRNA-155 for potential use with standard-of-care drug atezolizumab for NSCLC. Through modeling and simulation, we identified possible drug synergism between the two drugs that holds promise to improve tumor response at reduced drug exposure.Clinical Relevance-Identifying the possibility of drug synergism for an anti-microRNA-155 based nanotherapeutic with standard-of-care immunotherapy to improve lung cancer treatment outcomes.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Treatment Outcome , Immunotherapy
SELECTION OF CITATIONS
SEARCH DETAIL