Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Small ; 20(12): e2305170, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37946691

ABSTRACT

Three-dimensional (3D) graphene microstructures have the potential to boost performance in high-capacity batteries and ultrasensitive sensors. Numerous techniques have been developed to create such structures; however, the methods typically rely on structural supports, and/or lengthy post-print processing, increasing cost and complexity. Additive manufacturing techniques, such as printing, show promise in overcoming these challenges. This study employs aerosol jet printing for creating 3D graphene microstructures using water as the only solvent and without any post-print processing required. The graphene pillars exhibit conductivity immediately after printing, requiring no high-temperature annealing. Furthermore, these pillars are successfully printed in freestanding configurations at angles below 45° relative to the substrate, showcasing their adaptability for tailored applications. When graphene pillars are added to humidity sensors, the additional surface area does not yield a corresponding increase in sensor performance. However, graphene trusses, which add a parallel conduction path to the sensing surface, are found to improve sensitivity nearly 2×, highlighting the advantages of a topologically suspended circuit construction when adding 3D microstructures to sensing electrodes. Overall, incorporating 3D graphene microstructures to sensor electrodes can provide added sensitivity, and aerosol jet printing is a viable path to realizing these conductive microstructures without any post-print processing.

2.
Cell Mol Life Sci ; 80(2): 42, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36645496

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) play vital roles in normal brain functions (i.e., learning, memory, and neuronal development) and various neuropathological conditions, such as epilepsy, autism, Parkinson's disease, Alzheimer's disease, and traumatic brain injury. Endogenous neuroactive steroids such as 24(S)-hydroxycholesterol (24(S)-HC) have been shown to influence NMDAR activity, and positive allosteric modulators (PAMs) derived from 24(S)-hydroxycholesterol scaffold can also enhance NMDAR function. This study describes the structural determinants and mechanism of action for 24(S)-hydroxycholesterol and two novel synthetic analogs (SGE-550 and SGE-301) on NMDAR function. We also show that these agents can mitigate the altered function caused by a set of loss-of-function missense variants in NMDAR GluN subunit-encoding GRIN genes associated with neurological and neuropsychiatric disorders. We anticipate that the evaluation of novel neuroactive steroid NMDAR PAMs may catalyze the development of new treatment strategies for GRIN-related neuropsychiatric conditions.


Subject(s)
Alzheimer Disease , Nervous System Diseases , Neurosteroids , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Neurosteroids/pharmacology , Neurosteroids/therapeutic use , Hydroxycholesterols/pharmacology , Hydroxycholesterols/therapeutic use , Nervous System Diseases/drug therapy , Nervous System Diseases/genetics , Alzheimer Disease/drug therapy , Steroids/pharmacology , Allosteric Regulation/physiology
3.
N Engl J Med ; 381(10): 903-911, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31483961

ABSTRACT

BACKGROUND: Altered neurotransmission of γ-aminobutyric acid (GABA) has been implicated in the pathogenesis of depression. Whether SAGE-217, an oral, positive allosteric modulator of GABA type A receptors, is effective and safe for the treatment of major depressive disorder is unknown. METHODS: In this double-blind, phase 2 trial, we enrolled patients with major depression and randomly assigned them in a 1:1 ratio to receive 30 mg of SAGE-217 or placebo once daily. The primary end point was the change from baseline to day 15 in the score on the 17-item Hamilton Depression Rating Scale (HAM-D; scores range from 0 to 52, with higher scores indicating more severe depression). Secondary efficacy end points, which were assessed on days 2 through 8 and on days 15, 21, 28, 35, and 42, included changes from baseline in scores on additional depression and anxiety scales, a reduction from baseline of more than 50% in the HAM-D score, a HAM-D score of 7 or lower, and a Clinical Global Impression of Improvement score of 1 (very much improved) or 2 (much improved) (on a scale of 1 to 7, with a score of 7 indicating that symptoms are very much worse). RESULTS: A total of 89 patients underwent randomization: 45 patients were assigned to the SAGE-217 group, and 44 to the placebo group. The mean baseline HAM-D score was 25.2 in the SAGE-217 group and 25.7 in the placebo group. The least-squares mean (±SE) change in the HAM-D score from baseline to day 15 was -17.4±1.3 points in the SAGE-217 group and -10.3±1.3 points in the placebo group (least-squares mean difference in change, -7.0 points; 95% confidence interval, -10.2 to -3.9; P<0.001). The differences in secondary end points were generally in the same direction as those of the primary end point. There were no serious adverse events. The most common adverse events in the SAGE-217 group were headache, dizziness, nausea, and somnolence. CONCLUSIONS: Administration of SAGE-217 daily for 14 days resulted in a reduction in depressive symptoms at day 15. Adverse events were more common in the SAGE-217 group than in the placebo group. Further trials are needed to determine the durability and safety of SAGE-217 in major depressive disorder and to compare SAGE-217 with available treatments. (Funded by Sage Therapeutics; ClinicalTrials.gov number, NCT03000530.).


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , GABA Modulators/therapeutic use , Pregnanes/therapeutic use , Pyrazoles/therapeutic use , Receptors, GABA-A/metabolism , Administration, Oral , Adult , Allosteric Regulation , Antidepressive Agents/adverse effects , Depressive Disorder, Major/classification , Dizziness/chemically induced , Double-Blind Method , Female , GABA Modulators/adverse effects , Humans , Least-Squares Analysis , Male , Middle Aged , Nausea/chemically induced , Pregnanes/adverse effects , Psychiatric Status Rating Scales , Pyrazoles/adverse effects
4.
Hum Psychopharmacol ; 37(1): e2806, 2022 01.
Article in English | MEDLINE | ID: mdl-34352138

ABSTRACT

OBJECTIVE: To evaluate single zuranolone (SAGE-217) 30 or 45 mg doses in a 5-h phase advance insomnia model. METHODS: In this double-blind, three-way crossover study, healthy adults received placebo (n = 41), zuranolone 30 mg (n = 44), and zuranolone 45 mg (n = 42) across three treatment periods. Sleep was assessed by polysomnography and a postsleep questionnaire. Next-day residual effects and safety/tolerability were evaluated. RESULTS: Compared with placebo, zuranolone resulted in significant improvements in median sleep efficiency (30 mg, 84.6%; 45 mg, 87.6%; placebo, 72.9%; p < 0.001 for both doses), wake after sleep onset (WASO; 30 mg, 55.0 min; 45 mg, 42.5 min; placebo, 113.0 min; p < 0.001 for both doses), duration of awakenings (30 mg, 4.2 min, p < 0.001; 45 mg, 3.7 min, p = 0.001; placebo, 7.4 min), and total sleep time (TST; 30 mg, 406.3 min; 45 mg, 420.3 min; placebo, 350.0 min; p < 0.001 for both doses). Subjective endpoints (WASO, TST, sleep latency, sleep quality) also improved relative to placebo. Zuranolone was generally well tolerated, and the most common adverse events (≥2 participants, any period) were headache and fatigue. CONCLUSION: Zuranolone improved sleep measures versus placebo in a phase advance model of insomnia in healthy adults, supporting future studies in patients with insomnia disorder.


Subject(s)
Sleep Initiation and Maintenance Disorders , Adult , Cross-Over Studies , Double-Blind Method , Humans , Pregnanes , Pyrazoles , Sleep Initiation and Maintenance Disorders/drug therapy , Treatment Outcome
5.
J Pharmacol Exp Ther ; 377(1): 181-188, 2021 04.
Article in English | MEDLINE | ID: mdl-33441369

ABSTRACT

Ethanol is a noncompetitive inhibitor of N-methyl-d-aspartate receptors (NMDARs) and acutely disrupts hippocampal synaptic plasticity and learning. In the present study, we examined the effects of oxysterol positive allosteric modulators (PAMs) of NMDARs on ethanol-mediated inhibition of NMDARs, block of long-term potentiation (LTP) and long-term depression (LTD) in rat hippocampal slices, and defects in one-trial learning in vivo. We found that 24S-hydroxycholesterol and a synthetic oxysterol analog, SGE-301, overcame effects of ethanol on NMDAR-mediated synaptic responses in the CA1 region but did not alter acute effects of ethanol on LTD; the synthetic oxysterol, however, overcame acute inhibition of LTP. In addition, both oxysterols overcame persistent effects of ethanol on LTP in vitro, and the synthetic analog reversed defects in one-trial inhibitory avoidance learning in vivo. These results indicate that effects of ethanol on both LTP and LTD arise by complex mechanisms beyond NMDAR antagonism and that oxysterol NMDAR PAMS may represent a novel approach for preventing and reversing acute ethanol-mediated changes in cognition. SIGNIFICANCE STATEMENT: Ethanol acutely inhibits hippocampal NMDARs, LTP, and learning. This study found that certain oxysterols that are NMDAR-positive allosteric modulators can overcome the acute effects of ethanol on NMDARs, LTP, and learning. Oxysterols differ in their effects from agents that inhibit integrated cellular stress responses.


Subject(s)
Ethanol/pharmacology , Hippocampus/drug effects , Learning , Long-Term Potentiation , Oxysterols/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Central Nervous System Depressants/pharmacology , Drug Interactions , Hippocampus/metabolism , Hippocampus/physiology , Male , Rats , Rats, Sprague-Dawley
6.
Brain ; 143(9): 2709-2720, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32830245

ABSTRACT

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is an immune-mediated disease characterized by a complex neuropsychiatric syndrome in association with an antibody-mediated decrease of NMDAR. About 85% of patients respond to immunotherapy (and removal of an associated tumour if it applies), but it often takes several months or more than 1 year for patients to recover. There are no complementary treatments, beyond immunotherapy, to accelerate this recovery. Previous studies showed that SGE-301, a synthetic analogue of 24(S)-hydroxycholesterol, which is a potent and selective positive allosteric modulator of NMDAR, reverted the memory deficit caused by phencyclidine (a non-competitive antagonist of NMDAR), and prevented the NMDAR dysfunction caused by patients' NMDAR antibodies in cultured neurons. An advantage of SGE-301 is that it is optimized for systemic delivery such that plasma and brain exposures are sufficient to modulate NMDAR activity. Here, we used SGE-301 to confirm that in cultured neurons it prevented the antibody-mediated reduction of receptors, and then we applied it to a previously reported mouse model of passive cerebroventricular transfer of patient's CSF antibodies. Four groups were established: mice receiving continuous (14-day) infusion of patients' or controls' CSF, treated with daily subcutaneous administration of SGE-301 or vehicle (no drug). The effects on memory were examined with the novel object location test at different time points, and the effects on synaptic levels of NMDAR (assessed with confocal microscopy) and plasticity (long-term potentiation) were examined in the hippocampus on Day 18, which in this model corresponds to the last day of maximal clinical and synaptic alterations. As expected, mice infused with patient's CSF antibodies, but not those infused with controls' CSF, and treated with vehicle developed severe memory deficit without locomotor alteration, accompanied by a decrease of NMDAR clusters and impairment of long-term potentiation. All antibody-mediated pathogenic effects (memory, synaptic NMDAR, long-term potentiation) were prevented in the animals treated with SGE-301, despite this compound not antagonizing antibody binding. Additional investigations on the potential mechanisms related to these SGE-301 effects showed that (i) in cultured neurons SGE-301 prolonged the decay time of NMDAR-dependent spontaneous excitatory postsynaptic currents suggesting a prolonged open time of the channel; and (ii) it significantly decreased, without fully preventing, the internalization of antibody-bound receptors suggesting that additional, yet unclear mechanisms, contribute in keeping unchanged the surface NMDAR density. Overall, these findings suggest that SGE-301, or similar NMDAR modulators, could potentially serve as complementary treatment for anti-NMDAR encephalitis and deserve future investigations.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/metabolism , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/therapy , Autoantibodies/administration & dosage , Autoantibodies/cerebrospinal fluid , Receptors, N-Methyl-D-Aspartate/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Cells, Cultured , HEK293 Cells , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Hydroxycholesterols/chemistry , Hydroxycholesterols/pharmacology , Hydroxycholesterols/therapeutic use , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques
7.
IEEE Electron Device Lett ; 42(3): 367-370, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33746353

ABSTRACT

Ion gel-based dielectrics have long been considered for enabling low-voltage operation in printed thin-film transistors (TFTs), but their compatibility with in-place printing (a streamlined, direct-write printing approach where devices never leave the printer mid- or post-process) remains unexplored. Here, we demonstrate a simple and rapid 4-step in-place printing procedure for producing low-voltage electrolyte-gated carbon nanotube (CNT) thin-film transistors at low temperature (80 °C). This process consists of the use of polymer-wrapped CNT inks for printed channels, silver nanowire inks for printed electrodes, and imidazolium-based ion gel inks for printed gate dielectrics. We find that the efficacy of rinsing CNT films and printing an ion gel in-place is optimized using an elevated platen temperature (as opposed to external rinsing or post-process annealing), where resultant devices exhibited on/off-current ratios exceeding 103, mobilities exceeding 10 cm2V-1s-1, and gate hysteresis of only 0.1 V. Additionally, devices were tested under mechanical strain and long-term bias, showing exceptional flexibility and electrochemical stability over the course of 14-hour bias tests. The findings presented here widen the potential scope of print-in-place (PIP) devices and reveal new avenues of investigation for the improvement of bias stress stability in electrolyte-gated transistors.

8.
J Biol Chem ; 294(32): 12220-12230, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31239352

ABSTRACT

Neuroactive steroids (NASs) are synthesized within the brain and exert profound effects on behavior. These effects are primarily believed to arise from the activities of NASs as positive allosteric modulators (PAMs) of the GABA-type A receptor (GABAAR). NASs also activate a family of G protein-coupled receptors known as membrane progesterone receptors (mPRs). Here, using surface-biotinylation assays and electrophysiology techniques, we examined mPRs' role in mediating the effects of NAS on the efficacy of GABAergic inhibition. Selective mPR activation enhanced phosphorylation of Ser-408 and Ser-409 (Ser-408/9) within the GABAAR ß3 subunit, which depended on the activity of cAMP-dependent protein kinase A (PKA) and protein kinase C (PKC). mPR activation did not directly modify GABAAR activity and had no acute effects on phasic or tonic inhibition. Instead, mPR activation induced a sustained elevation in tonic current, which was blocked by PKA and PKC inhibition. Substitution of Ser-408/9 to alanine residues also prevented the effects of mPR activation on tonic current. Furthermore, this substitution abolished the effects of sustained NAS exposure on tonic inhibition. Interestingly, the allosteric effects of NAS on GABAergic inhibition were independent of Ser-408/9 in the ß3 subunit. Additionally, although allosteric effects of NAS on GABAergic inhibition were sensitive to a recently developed "NAS antagonist," the sustained effects of NAS on tonic inhibition were not. We conclude that metabotropic effects of NAS on GABAergic inhibition are mediated by mPR-dependent modulation of GABAAR phosphorylation. We propose that this mechanism may contribute to the varying behavioral effects of NAS.


Subject(s)
Neurosteroids/metabolism , Receptors, GABA-A/metabolism , Allosteric Regulation/drug effects , Animals , Cell Membrane/metabolism , Evoked Potentials/drug effects , GABA-A Receptor Antagonists/pharmacology , HEK293 Cells , Hippocampus/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Neurosteroids/pharmacology , Phosphorylation/drug effects , Protein Kinase C/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, GABA-A/chemistry , Receptors, GABA-A/genetics , Receptors, Progesterone/agonists , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism
9.
J Neuroinflammation ; 17(1): 192, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32552741

ABSTRACT

BACKGROUND: Genome-wide association studies of Alzheimer's disease (AD) have implicated pathways related to lipid homeostasis and innate immunity in AD pathophysiology. However, the exact cellular and chemical mediators of neuroinflammation in AD remain poorly understood. The oxysterol 25-hydroxycholesterol (25-HC) is an important immunomodulator produced by peripheral macrophages with wide-ranging effects on cell signaling and innate immunity. Cholesterol 25-hydroxylase (CH25H), the enzyme responsible for 25-HC production, has also been found to be one of the disease-associated microglial (DAM) genes that are upregulated in the brain of AD and AD transgenic mouse models. METHODS: We used real-time PCR and immunoblotting to examine CH25H expression in human AD brain tissue and in transgenic mouse brain tissue-bearing amyloid-ß plaques or tau pathology. The innate immune response of primary mouse microglia under different treatment conditions or bearing different genetic backgrounds was analyzed using ELISA, western blotting, or immunocytochemistry. RESULTS: We found that CH25H expression is upregulated in human AD brain tissue and in transgenic mouse brain tissue-bearing amyloid-ß plaques or tau pathology. Treatment with the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS) markedly upregulates CH25H expression in the mouse brain and stimulates CH25H expression and 25-HC secretion in mouse primary microglia. We found that LPS-induced microglial production of the pro-inflammatory cytokine IL-1ß is markedly potentiated by 25-HC and attenuated by the deletion of CH25H. Microglia expressing apolipoprotein E4 (apoE4), a genetic risk factor for AD, produce greater amounts of 25-HC than apoE3-expressing microglia following treatment with LPS. Remarkably, 25-HC treatment results in a greater level of IL-1ß secretion in LPS-activated apoE4-expressing microglia than in apoE2- or apoE3-expressing microglia. Blocking potassium efflux or inhibiting caspase-1 prevents 25-HC-potentiated IL-1ß release in apoE4-expressing microglia, indicating the involvement of caspase-1 inflammasome activity. CONCLUSION: 25-HC may function as a microglial-secreted inflammatory mediator in the brain, promoting IL-1ß-mediated neuroinflammation in an apoE isoform-dependent manner (E4>>E2/E3) and thus may be an important mediator of neuroinflammation in AD.


Subject(s)
Apolipoproteins E/metabolism , Hydroxycholesterols/metabolism , Interleukin-1beta/metabolism , Microglia/metabolism , Steroid Hydroxylases/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Apolipoproteins E/genetics , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Humans , Lipopolysaccharides/pharmacology , Mice , Mice, Transgenic , Microglia/drug effects , Steroid Hydroxylases/genetics , tau Proteins/metabolism
10.
Nano Lett ; 19(3): 1460-1466, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30720283

ABSTRACT

Thousands of reports have demonstrated the exceptional performance of sensors based on carbon nanotube (CNT) transistors, with promises of transformative impact. Yet, the effect of long-term bias stress on individual CNTs, critical for most sensing applications, has remained uncertain. Here, we report bias ranges under which CNT transistors can operate continuously for months or more without degradation. Using a custom characterization system, the impacts of defect formation and charge traps on the stability of CNT-based sensors under extended bias are determined. In addition to breakdown, which is well-known, we identify three additional operational modes: full stability, slow decay, and fast decay. We identify a current drift behavior that reduces dynamic range by over four orders of magnitude but is avoidable with appropriate sensing modalities. Identification of these stable operation modes and limits for nanotube-based sensors addresses concerns surrounding their development for a myriad of sensing applications.

11.
J Neurosci ; 38(13): 3218-3229, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29476014

ABSTRACT

N-methyl-d-aspartate receptors (NMDARs) are ionotropic glutamate receptors important for synaptic plasticity, memory, and neuropsychiatric health. NMDAR hypofunction contributes to multiple disorders, including anti-NMDAR encephalitis (NMDARE), an autoimmune disease of the CNS associated with GluN1 antibody-mediated NMDAR internalization. Here we characterize the functional/pharmacological consequences of exposure to CSF from female human NMDARE patients on NMDAR function, and we characterize the effects of intervention with recently described positive allosteric modulators (PAMs) of NMDARs. Incubation (48 h) of rat hippocampal neurons of both sexes in confirmed NMDARE patient CSF, but not control CSF, attenuated NMDA-induced current. Residual NMDAR function was characterized by lack of change in channel open probability, indiscriminate loss of synaptic and extrasynaptic NMDARs, and indiscriminate loss of GluN2B-containing and GluN2B-lacking NMDARs. NMDARs tagged with N-terminal pHluorin fluorescence demonstrated loss of surface receptors. Thus, function of residual NMDARs following CSF exposure was indistinguishable from baseline, and deficits appear wholly accounted for by receptor loss. Coapplication of CSF and PAMs of NMDARs (SGE-301 or SGE-550, oxysterol-mimetic) for 24 h restored NMDAR function following 24 h incubation in patient CSF. Curiously, restoration of NMDAR function was observed despite washout of PAMs before electrophysiological recordings. Subsequent experiments suggested that residual allosteric potentiation of NMDAR function explained the persistent rescue. Further studies of the pathogenesis of NMDARE and intervention with PAMs may inform new treatments for NMDARE and other disorders associated with NMDAR hypofunction.SIGNIFICANCE STATEMENT Anti-N-methyl-d-aspartate receptor encephalitis (NMDARE) is increasingly recognized as an important cause of sudden-onset psychosis and other neuropsychiatric symptoms. Current treatment leaves unmet medical need. Here we demonstrate cellular evidence that newly identified positive allosteric modulators of NMDAR function may be a viable therapeutic strategy.


Subject(s)
Encephalitis/cerebrospinal fluid , Hashimoto Disease/cerebrospinal fluid , Neurotransmitter Agents/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Potentials/drug effects , Adult , Allosteric Regulation , Animals , Cell Line , Cells, Cultured , Encephalitis/drug therapy , Encephalitis/immunology , Female , Hashimoto Disease/drug therapy , Hashimoto Disease/immunology , Humans , Male , Mice , Neurotransmitter Agents/cerebrospinal fluid , Neurotransmitter Agents/immunology , Neurotransmitter Agents/therapeutic use , Protein Transport , Rats , Receptors, N-Methyl-D-Aspartate/immunology
12.
Analyst ; 144(3): 997-1007, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30403210

ABSTRACT

Synchrotron radiation Fourier transform infrared microspectroscopy (SR-microFTIR) of live biological cells has the potential to provide far greater biochemical and morphological detail than equivalent studies using dehydrated, chemically-fixed single cells. Attempts to measure live cells using microFTIR are complicated by the aqueous environment required and corresponding strong infrared absorbance by water. There is also the additional problem of the limited lifetime of the cells outside of their preferred culture environment. In this work, we outline simple, cost-effective modifications to a commercially available liquid sample holder to perform single live cell analysis under an IR microscope and demonstrate cell viability up to at least 24 hours. A study using this system in which live cells have been measured at increasing temperature has shown spectral changes in protein bands attributed to α-ß transition, consistent with other published work, and proves the ability to simultaneously induce and measure biochemical changes. An additional study of deuterated palmitic acid (D31-PA) uptake at different timepoints has made use of over 200 individual IR spectra collected over ∼4 hours, taking advantage of the ability to maintain viable cell samples for longer periods of time in the measurement environment, and therefore acquire greatly increased numbers of spectra without compromising on spectral quality. Further developments of this system are planned to widen the range of possible experiments, and incorporate more complex studies, including drug-cell interaction.


Subject(s)
Cell Survival , Microscopy/methods , Palmitic Acid/analysis , Single-Cell Analysis/methods , Spectroscopy, Fourier Transform Infrared/methods , Synchrotrons , Humans
13.
Phys Chem Chem Phys ; 21(8): 4162-4175, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30656331

ABSTRACT

Complementary structural and dynamical information on drug-DNA interplay has been achieved at a molecular level, for Pt/Pd-drugs, allowing a better understanding of their pharmacodynamic profile which is crucial for the development of improved chemotherapeutic agents. The interaction of two cisplatin-like dinuclear Pt(ii) and Pd(ii) complexes with DNA was studied through a multidisciplinary experimental approach, using quasi-elastic neutron scattering (QENS) techniques coupled with synchrotron-based extended X-ray absorption fine structure (SR-EXAFS) and Fourier-Transform Infrared Spectroscopy-Attenuated Total Reflectance (SR-FTIR-ATR). DNA extracted from drug-exposed human triple negative breast cancer cells (MDA-MB-231) was used, with a view to evaluate the effect of the unconventional antineoplastic agents on this low prognosis type of cancer. The drug impact on DNA's dynamical profile, via its hydration layer, was provided by QENS, a drug-triggered enhanced mobility having been revealed. Additionally, an onset of anharmonicity was detected for dehydrated DNA, at room temperature. Far- and mid-infrared measurements allowed the first simultaneous detection of the drugs and their primary pharmacological target, as well as the drug-prompted changes in DNA's conformation that mediate cytotoxicity. The local environment of the absorbing Pd(ii) and Pt(ii) centers in the drugs' adducts with adenine, guanine and glutathione was attained by EXAFS.


Subject(s)
Antineoplastic Agents/chemistry , DNA/chemistry , Palladium/chemistry , Platinum Compounds/chemistry , Adenine/chemistry , Cell Line, Tumor , Glutathione/chemistry , Guanine/chemistry , Humans , Neutrons , Nucleic Acid Conformation , Spectroscopy, Fourier Transform Infrared , Synchrotrons , X-Ray Absorption Spectroscopy
14.
Lancet ; 390(10093): 480-489, 2017 07 29.
Article in English | MEDLINE | ID: mdl-28619476

ABSTRACT

BACKGROUND: Post-partum depression is a serious mood disorder in women that might be triggered by peripartum fluctuations in reproductive hormones. This phase 2 study investigated brexanolone (USAN; formerly SAGE-547 injection), an intravenous formulation of allopregnanolone, a positive allosteric modulator of γ-aminobutyric acid (GABAA) receptors, for the treatment of post-partum depression. METHODS: For this double-blind, randomised, placebo-controlled trial, we enrolled self-referred or physician-referred female inpatients (≤6 months post partum) with severe post-partum depression (Hamilton Rating Scale for Depression [HAM-D] total score ≥26) in four hospitals in the USA. Eligible women were randomly assigned (1:1), via a computer-generated randomisation program, to receive either a single, continuous intravenous dose of brexanolone or placebo for 60 h. Patients and investigators were masked to treatment assignments. The primary efficacy endpoint was the change from baseline in the 17-item HAM-D total score at 60 h, assessed in all randomised patients who started infusion of study drug or placebo and who had a completed baseline HAM-D assessment and at least one post-baseline HAM-D assessment. Patients were followed up until day 30. This trial is registered with ClinicalTrials.gov, number NCT02614547. FINDINGS: This trial was done between Dec 15, 2015 (first enrolment), and May 19, 2016 (final visit of the last enrolled patient). 21 women were randomly assigned to the brexanolone (n=10) and placebo (n=11) groups. At 60 h, mean reduction in HAM-D total score from baseline was 21·0 points (SE 2·9) in the brexanolone group compared with 8·8 points (SE 2·8) in the placebo group (difference -12·2, 95% CI -20·77 to -3·67; p=0·0075; effect size 1·2). No deaths, serious adverse events, or discontinuations because of adverse events were reported in either group. Four of ten patients in the brexanolone group had adverse events compared with eight of 11 in the placebo group. The most frequently reported adverse events in the brexanolone group were dizziness (two patients in the brexanolone group vs three patients in the placebo group) and somnolence (two vs none). Moderate treatment-emergent adverse events were reported in two patients in the brexanolone group (sinus tachycardia, n=1; somnolence, n=1) and in two patients in the placebo group (infusion site pain, n=1; tension headache, n=1); one patient in the placebo group had a severe treatment-emergent adverse event (insomnia). INTERPRETATION: In women with severe post-partum depression, infusion of brexanolone resulted in a significant and clinically meaningful reduction in HAM-D total score, compared with placebo. Our results support the rationale for targeting synaptic and extrasynaptic GABAA receptors in the development of therapies for patients with post-partum depression. A pivotal clinical programme for the investigation of brexanolone in patients with post-partum depression is in progress. FUNDING: Sage Therapeutics, Inc.


Subject(s)
Antidepressive Agents/therapeutic use , Depression, Postpartum/drug therapy , Pregnanolone/therapeutic use , beta-Cyclodextrins/therapeutic use , Adult , Antidepressive Agents/administration & dosage , Antidepressive Agents/adverse effects , Double-Blind Method , Drug Combinations , Female , Humans , Infusions, Intravenous , Pregnanolone/administration & dosage , Pregnanolone/adverse effects , Psychiatric Status Rating Scales , Treatment Outcome , Young Adult , beta-Cyclodextrins/administration & dosage , beta-Cyclodextrins/adverse effects
15.
Ann Neurol ; 82(3): 342-352, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28779545

ABSTRACT

OBJECTIVE: Super-refractory status epilepticus (SRSE) is a life-threatening form of status epilepticus that continues or recurs despite 24 hours or more of anesthetic treatment. We conducted a multicenter, phase 1/2 study in SRSE patients to evaluate the safety and tolerability of brexanolone (USAN; formerly SAGE-547 Injection), a proprietary, aqueous formulation of the neuroactive steroid, allopregnanolone. Secondary objectives included pharmacokinetic assessment and open-label evaluation of brexanolone response during and after anesthetic third-line agent (TLA) weaning. METHODS: Patients receiving TLAs for SRSE control were eligible for open-label, 1-hour brexanolone loading infusions, followed by maintenance infusion. After 48 hours of brexanolone infusion, TLAs were weaned during brexanolone maintenance. After 4 days, the brexanolone dose was tapered. Safety and functional status were assessed over 3 weeks of follow-up. RESULTS: Twenty-five patients received open-label study drug. No serious adverse events (SAEs) were attributable to study drug, as determined by the Safety Review Committee. Sixteen patients (64%) experienced ≥1 SAE. Six patient deaths occurred, all deemed related to underlying medical conditions. Twenty-two patients underwent ≥1 TLA wean attempt. Seventeen (77%) met the response endpoint of weaning successfully off TLAs before tapering brexanolone. Sixteen (73%) were successfully weaned off TLAs within 5 days of initiating brexanolone infusion without anesthetic agent reinstatement in the following 24 hours. INTERPRETATION: In an open-label cohort of limited size, brexanolone demonstrated tolerability among SRSE patients of heterogeneous etiologies and was associated with a high rate of successful TLA weaning. The results suggest the possible development of brexanolone as an adjunctive therapy for SRSE requiring pharmacological coma for seizure control. Ann Neurol 2017;82:342-352.


Subject(s)
Anticonvulsants/therapeutic use , Pregnanolone/therapeutic use , Status Epilepticus/drug therapy , Adolescent , Adult , Aged , Anticonvulsants/adverse effects , Child , Female , Humans , Male , Middle Aged , Pregnanolone/adverse effects , Recurrence , Retrospective Studies , Treatment Outcome , Young Adult
16.
Anal Bioanal Chem ; 410(23): 5779-5789, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29968104

ABSTRACT

The study of live cells using Fourier transform infrared spectroscopy (FTIR) and FTIR microspectroscopy (FT-IRMS) intrinsically yields more information about cell metabolism than comparable experiments using dried or chemically fixed samples. There are, however, a number of barriers to obtaining high-quality vibrational spectra of live cells, including correction for the significant contributions of water bands to the spectra, and the physical stresses placed upon cells by compression in short pathlength sample holders. In this study, we present a water correction method that is able to result in good-quality cell spectra from water layers of 10 and 12 µm and demonstrate that sufficient biological detail is retained to separate spectra of live cells based upon their exposure to different novel anti-cancer agents. The IR brilliance of a synchrotron radiation (SR) source overcomes the problem of the strong water absorption and provides cell spectra with good signal-to-noise ratio for further analysis. Supervised multivariate analysis (MVA) and investigation of average spectra have shown significant separation between control cells and cells treated with the DNA cross-linker PL63 on the basis of phosphate and DNA-related signatures. Meanwhile, the same control cells can be significantly distinguished from cells treated with the protein kinase inhibitor YA1 based on changes in the amide II region. Each of these separations can be linked directly to the known biochemical mode of action of each agent. Graphical abstract.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Neoplasms/chemistry , Neoplasms/drug therapy , Single-Cell Analysis/methods , Spectroscopy, Fourier Transform Infrared/methods , Humans , K562 Cells , Synchrotrons
17.
Epilepsy Behav ; 68: 22-30, 2017 03.
Article in English | MEDLINE | ID: mdl-28109985

ABSTRACT

Organophosphorus nerve agents (OPNAs) are irreversible inhibitors of acetylcholinesterase that pose a serious threat to public health because of their use as chemical weapons. Exposure to high doses of OPNAs can dramatically potentiate cholinergic synaptic activity and cause status epilepticus (SE). Current standard of care for OPNA exposure involves treatment with cholinergic antagonists, oxime cholinesterase reactivators, and benzodiazepines. However, data from pre-clinical models suggest that OPNA-induced SE rapidly becomes refractory to benzodiazepines. Neuroactive steroids (NAS), such as allopregnanolone, retain anticonvulsant activity in rodent models of benzodiazepine-resistant SE, perhaps because they modulate a broader variety of GABAA receptor subtypes. SGE-516 is a novel, next generation NAS and a potent and selective GABAA receptor positive allosteric modulator (PAM). The present study first established that SGE-516 reduced electrographic seizures in the rat lithium-pilocarpine model of pharmacoresistant SE. Then the anticonvulsant activity of SGE-516 was investigated in the soman-intoxication model of OPNA-induced SE. SGE-516 (5.6, 7.5, and 10mg/kg, IP) significantly reduced electrographic seizure activity compared to control when administered 20min after SE onset. When 10mg/kg SGE-516 was administered 40min after SE onset, seizure activity was still significantly reduced compared to control. In addition, all cohorts of rats treated with SGE-516 exhibited significantly reduced neuronal cell death as measured by FluoroJade B immunohistochemistry. These data suggest synthetic NASs that positively modulate both synaptic and extrasynaptic GABAA receptors may be candidates for further study in the treatment of OPNA-induced SE.


Subject(s)
Anticonvulsants/pharmacology , Cell Death/drug effects , GABA Modulators/pharmacology , Neurons/drug effects , Neurotransmitter Agents/pharmacology , Seizures/drug therapy , Soman , Status Epilepticus/drug therapy , Animals , Anticonvulsants/therapeutic use , Convulsants , GABA Modulators/therapeutic use , Male , Neurotransmitter Agents/therapeutic use , Pilocarpine , Rats , Rats, Sprague-Dawley , Seizures/chemically induced , Status Epilepticus/chemically induced
18.
Hum Psychopharmacol ; 32(2)2017 03.
Article in English | MEDLINE | ID: mdl-28370307

ABSTRACT

OBJECTIVE: Preclinical evidence indicates that rapid changes in levels of allopregnanolone, the predominant metabolite of progesterone, confer dramatic behavioral changes and may trigger postpartum depression (PPD) in some women. Considering the pathophysiology of PPD (i.e., triggered by reproductive steroids), the need for fast-acting, efficacious treatments and the negative consequences of untreated PPD, there is an increasing focus on developing PPD therapies. Brexanolone (USAN; formerly SAGE-547 Injection), a proprietary injectable allopregnanolone formulation, was evaluated as a treatment for severe PPD in a proof-of-concept, open-label study. METHODS: Four women with severe PPD, defined as a baseline 17-item Hamilton Rating Scale for Depression (HAMD) score of ≥20, received brexanolone, titrated to a dose reflecting third-trimester allopregnanolone levels. After a 36-hour maintenance infusion, tapering occurred over 12 hours. Primary outcomes were measures of safety. Secondary outcomes were assessments of efficacy, including HAMD. RESULTS: All enrolled patients completed the study. Fourteen adverse events were reported, of which none was severe. Starting at the first measure after infusion initiation and continuing through Hour 84, mean HAMD total scores were reduced to levels consistent with remission of symptoms. All other efficacy assessments showed similar improvements. CONCLUSIONS: Brexanolone was well tolerated and demonstrated activity in severe PPD. Larger, double-blind trials are needed for further evaluation.


Subject(s)
Depression, Postpartum/drug therapy , Pregnanolone/therapeutic use , Proof of Concept Study , beta-Cyclodextrins/therapeutic use , Adult , Double-Blind Method , Drug Combinations , Female , Humans , Infusions, Intravenous , Pregnanolone/administration & dosage , Pregnanolone/adverse effects , Pregnanolone/pharmacokinetics , Treatment Outcome , beta-Cyclodextrins/administration & dosage , beta-Cyclodextrins/adverse effects , beta-Cyclodextrins/pharmacokinetics
19.
J Neurosci Res ; 94(6): 568-78, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26308557

ABSTRACT

Alterations in the ratio of excitatory to inhibitory transmission are emerging as a common component of many nervous system disorders, including autism spectrum disorders (ASDs). Tonic γ-aminobutyric acidergic (GABAergic) transmission provided by peri- and extrasynaptic GABA type A (GABAA ) receptors powerfully controls neuronal excitability and plasticity and, therefore, provides a rational therapeutic target for normalizing hyperexcitable networks across a variety of disorders, including ASDs. Our previous studies revealed tonic GABAergic deficits in principal excitatory neurons in the basolateral amygdala (BLA) in the Fmr1(-/y) knockout (KO) mouse model fragile X syndrome. To correct amygdala deficits in tonic GABAergic neurotransmission in Fmr1(-/y) KO mice, we developed a novel positive allosteric modulator of GABAA receptors, SGE-872, based on endogenously active neurosteroids. This study shows that SGE-872 is nearly as potent and twice as efficacious for positively modulating GABAA receptors as its parent molecule, allopregnanolone. Furthermore, at submicromolar concentrations (≤1 µM), SGE-872 is selective for tonic, extrasynaptic α4ß3δ-containing GABAA receptors over typical synaptic α1ß2γ2 receptors. We further find that SGE-872 strikingly rescues the tonic GABAergic transmission deficit in principal excitatory neurons in the Fmr1(-/y) KO BLA, a structure heavily implicated in the neuropathology of ASDs. Therefore, the potent and selective action of SGE-872 on tonic GABAA receptors containing α4 subunits may represent a novel and highly useful therapeutic avenue for ASDs and related disorders involving hyperexcitability of neuronal networks.


Subject(s)
Amygdala/drug effects , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/pathology , GABA Modulators/pharmacology , Membrane Potentials/drug effects , gamma-Aminobutyric Acid/metabolism , Amygdala/metabolism , Amygdala/pathology , Animals , Animals, Newborn , CHO Cells , Cricetulus , Disease Models, Animal , Dose-Response Relationship, Drug , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , GABA Agents/pharmacology , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/pharmacology , In Vitro Techniques , Membrane Potentials/genetics , Mice , Mice, Knockout , Patch-Clamp Techniques , Pregnanolone/analogs & derivatives , Pregnanolone/chemistry , Pregnanolone/pharmacology , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Transfection , gamma-Aminobutyric Acid/pharmacology
20.
Alcohol Clin Exp Res ; 40(8): 1662-70, 2016 08.
Article in English | MEDLINE | ID: mdl-27435872

ABSTRACT

BACKGROUND: Medial prefrontal cortex (mPFC) dysfunction is present in heavy alcohol consumers. Dopamine signaling in mPFC is associated with executive functioning and affects drinking behavior; however, direct measurement of extracellular mPFC dopamine during appetitive and consummatory ethanol (EtOH) self-administration behavior has not been reported. METHODS: We used in vivo microdialysis in freely behaving, adult, male, Long Evans rats to determine extracellular dopamine concentration in the mPFC during operant self-administration of an EtOH-plus-sucrose or sucrose solution. The model separated appetitive/seeking from consummatory phases of the operant session. Dopamine was also monitored in an untrained handling control group, and dialysate EtOH was measured in the EtOH-drinking group. RESULTS: Home cage baseline dopamine was lower in rats that experienced a week of drinking sweetened EtOH compared with sucrose-drinking and handling controls. Transfer into the operant chamber and the initiation of consumption stimulated a relatively higher change in dopamine over baseline in the sweetened EtOH group compared with sucrose and handling controls. However, all groups show a dopamine response during transfer into the operant chamber, and the sucrose group had a relatively higher change in dopamine over baseline during initiation of consumption compared with handling controls. The time courses of dopamine and EtOH in the mPFC differ in the EtOH-consuming rats. CONCLUSIONS: Differences in extracellular mPFC dopamine between EtOH drinkers compared with control groups suggest that mPFC dopamine is involved in the mechanism of operant self-administration of sweetened EtOH and sucrose. Furthermore, the increase in dopamine during consumption is consistent with a role of mPFC dopamine in reward prediction.


Subject(s)
Conditioning, Operant/physiology , Dopamine/metabolism , Ethanol/administration & dosage , Prefrontal Cortex/metabolism , Sweetening Agents/administration & dosage , Animals , Conditioning, Operant/drug effects , Male , Prefrontal Cortex/drug effects , Rats , Rats, Long-Evans , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL