Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Nature ; 604(7905): 330-336, 2022 04.
Article in English | MEDLINE | ID: mdl-35172323

ABSTRACT

The animal reservoir of SARS-CoV-2 is unknown despite reports of SARS-CoV-2-related viruses in Asian Rhinolophus bats1-4, including the closest virus from R. affinis, RaTG13 (refs. 5,6), and pangolins7-9. SARS-CoV-2 has a mosaic genome, to which different progenitors contribute. The spike sequence determines the binding affinity and accessibility of its receptor-binding domain to the cellular angiotensin-converting enzyme 2 (ACE2) receptor and is responsible for host range10-12. SARS-CoV-2 progenitor bat viruses genetically close to SARS-CoV-2 and able to enter human cells through a human ACE2 (hACE2) pathway have not yet been identified, although they would be key in understanding the origin of the epidemic. Here we show that such viruses circulate in cave bats living in the limestone karstic terrain in northern Laos, in the Indochinese peninsula. We found that the receptor-binding domains of these viruses differ from that of SARS-CoV-2 by only one or two residues at the interface with ACE2, bind more efficiently to the hACE2 protein than that of the SARS-CoV-2 strain isolated in Wuhan from early human cases, and mediate hACE2-dependent entry and replication in human cells, which is inhibited by antibodies that neutralize SARS-CoV-2. None of these bat viruses contains a furin cleavage site in the spike protein. Our findings therefore indicate that bat-borne SARS-CoV-2-like viruses that are potentially infectious for humans circulate in Rhinolophus spp. in the Indochinese peninsula.


Subject(s)
COVID-19 , Chiroptera , Angiotensin-Converting Enzyme 2 , Animals , Asia , Caves , Chiroptera/virology , Disease Reservoirs , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
2.
EMBO Rep ; 24(4): e56055, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36876574

ABSTRACT

Bat sarbecovirus BANAL-236 is highly related to SARS-CoV-2 and infects human cells, albeit lacking the furin cleavage site in its spike protein. BANAL-236 replicates efficiently and pauci-symptomatically in humanized mice and in macaques, where its tropism is enteric, strongly differing from that of SARS-CoV-2. BANAL-236 infection leads to protection against superinfection by a virulent strain. We find no evidence of antibodies recognizing bat sarbecoviruses in populations in close contact with bats in which the virus was identified, indicating that such spillover infections, if they occur, are rare. Six passages in humanized mice or in human intestinal cells, mimicking putative early spillover events, select adaptive mutations without appearance of a furin cleavage site and no change in virulence. Therefore, acquisition of a furin site in the spike protein is likely a pre-spillover event that did not occur upon replication of a SARS-CoV-2-like bat virus in humans or other animals. Other hypotheses regarding the origin of the SARS-CoV-2 should therefore be evaluated, including the presence of sarbecoviruses carrying a spike with a furin cleavage site in bats.


Subject(s)
COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , Furin/genetics , Furin/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Mutation
3.
PLoS Comput Biol ; 19(8): e1010721, 2023 08.
Article in English | MEDLINE | ID: mdl-37556476

ABSTRACT

The impact of variants of concern (VoC) on SARS-CoV-2 viral dynamics remains poorly understood and essentially relies on observational studies subject to various sorts of biases. In contrast, experimental models of infection constitute a powerful model to perform controlled comparisons of the viral dynamics observed with VoC and better quantify how VoC escape from the immune response. Here we used molecular and infectious viral load of 78 cynomolgus macaques to characterize in detail the effects of VoC on viral dynamics. We first developed a mathematical model that recapitulate the observed dynamics, and we found that the best model describing the data assumed a rapid antigen-dependent stimulation of the immune response leading to a rapid reduction of viral infectivity. When compared with the historical variant, all VoC except beta were associated with an escape from this immune response, and this effect was particularly sensitive for delta and omicron variant (p<10-6 for both). Interestingly, delta variant was associated with a 1.8-fold increased viral production rate (p = 0.046), while conversely omicron variant was associated with a 14-fold reduction in viral production rate (p<10-6). During a natural infection, our models predict that delta variant is associated with a higher peak viral RNA than omicron variant (7.6 log10 copies/mL 95% CI 6.8-8 for delta; 5.6 log10 copies/mL 95% CI 4.8-6.3 for omicron) while having similar peak infectious titers (3.7 log10 PFU/mL 95% CI 2.4-4.6 for delta; 2.8 log10 PFU/mL 95% CI 1.9-3.8 for omicron). These results provide a detailed picture of the effects of VoC on total and infectious viral load and may help understand some differences observed in the patterns of viral transmission of these viruses.


Subject(s)
COVID-19 , Animals , SARS-CoV-2/genetics , Cell Movement , Macaca fascicularis , Primates
4.
EMBO Rep ; 23(2): e54341, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34914162

ABSTRACT

SARS-CoV-2 infection results in impaired interferon response in patients with severe COVID-19. However, how SARS-CoV-2 interferes with host immune responses is incompletely understood. Here, we sequence small RNAs from SARS-CoV-2-infected human cells and identify a microRNA (miRNA) derived from a recently evolved region of the viral genome. We show that the virus-derived miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer, which are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3'UTR of interferon-stimulated genes and represses their expression in a miRNA-like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID-19 patients. We propose that SARS-CoV-2 can potentially employ a virus-derived miRNA to hijack the host miRNA machinery, which could help to evade the interferon-mediated immune response.


Subject(s)
COVID-19 , MicroRNAs , RNA, Viral/genetics , SARS-CoV-2/genetics , 3' Untranslated Regions , COVID-19/immunology , Humans , Immunity , MicroRNAs/genetics
5.
J Biol Chem ; 298(1): 101290, 2022 01.
Article in English | MEDLINE | ID: mdl-34678315

ABSTRACT

The current COVID-19 pandemic illustrates the importance of obtaining reliable methods for the rapid detection of SARS-CoV-2. A highly specific and sensitive diagnostic test able to differentiate the SARS-CoV-2 virus from common human coronaviruses is therefore needed. Coronavirus nucleoprotein (N) localizes to the cytoplasm and the nucleolus and is required for viral RNA synthesis. N is the most abundant coronavirus protein, so it is of utmost importance to develop specific antibodies for its detection. In this study, we developed a sandwich immunoassay to recognize the SARS-CoV-2 N protein. We immunized one alpaca with recombinant SARS-CoV-2 N and constructed a large single variable domain on heavy chain (VHH) antibody library. After phage display selection, seven VHHs recognizing the full N protein were identified by ELISA. These VHHs did not recognize the nucleoproteins of the four common human coronaviruses. Hydrogen Deuterium eXchange-Mass Spectrometry (HDX-MS) analysis also showed that these VHHs mainly targeted conformational epitopes in either the C-terminal or the N-terminal domains. All VHHs were able to recognize SARS-CoV-2 in infected cells or on infected hamster tissues. Moreover, the VHHs could detect the SARS variants B.1.17/alpha, B.1.351/beta, and P1/gamma. We propose that this sandwich immunoassay could be applied to specifically detect the SARS-CoV-2 N in human nasal swabs.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Nucleocapsid Proteins/analysis , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Animals , Cricetinae , Electrophoresis, Polyacrylamide Gel , Humans , Limit of Detection , Nucleocapsid Proteins/immunology
7.
PLoS Comput Biol ; 17(3): e1008785, 2021 03.
Article in English | MEDLINE | ID: mdl-33730053

ABSTRACT

Non-human primates infected with SARS-CoV-2 exhibit mild clinical signs. Here we used a mathematical model to characterize in detail the viral dynamics in 31 cynomolgus macaques for which nasopharyngeal and tracheal viral load were frequently assessed. We identified that infected cells had a large burst size (>104 virus) and a within-host reproductive basic number of approximately 6 and 4 in nasopharyngeal and tracheal compartment, respectively. After peak viral load, infected cells were rapidly lost with a half-life of 9 hours, with no significant association between cytokine elevation and clearance, leading to a median time to viral clearance of 10 days, consistent with observations in mild human infections. Given these parameter estimates, we predict that a prophylactic treatment blocking 90% of viral production or viral infection could prevent viral growth. In conclusion, our results provide estimates of SARS-CoV-2 viral kinetic parameters in an experimental model of mild infection and they provide means to assess the efficacy of future antiviral treatments.


Subject(s)
COVID-19/virology , Macaca fascicularis/virology , SARS-CoV-2/physiology , Animals , Antiviral Agents/pharmacology , Basic Reproduction Number , COVID-19/blood , COVID-19/prevention & control , Cytokines/blood , Disease Models, Animal , Nasopharynx/virology , SARS-CoV-2/drug effects , Trachea/virology , Viral Load , Virus Replication/drug effects
8.
Euro Surveill ; 26(13)2021 04.
Article in English | MEDLINE | ID: mdl-33797390

ABSTRACT

BackgroundChildren have a low rate of COVID-19 and secondary severe multisystem inflammatory syndrome (MIS) but present a high prevalence of symptomatic seasonal coronavirus infections.AimWe tested if prior infections by seasonal coronaviruses (HCoV) NL63, HKU1, 229E or OC43 as assessed by serology, provide cross-protective immunity against SARS-CoV-2 infection.MethodsWe set a cross-sectional observational multicentric study in pauci- or asymptomatic children hospitalised in Paris during the first wave for reasons other than COVID (hospitalised children (HOS), n = 739) plus children presenting with MIS (n = 36). SARS-CoV-2 antibodies directed against the nucleoprotein (N) and S1 and S2 domains of the spike (S) proteins were monitored by an in-house luciferase immunoprecipitation system assay. We randomly selected 69 SARS-CoV-2-seropositive patients (including 15 with MIS) and 115 matched SARS-CoV-2-seronegative patients (controls (CTL)). We measured antibodies against SARS-CoV-2 and HCoV as evidence for prior corresponding infections and assessed if SARS-CoV-2 prevalence of infection and levels of antibody responses were shaped by prior seasonal coronavirus infections.ResultsPrevalence of HCoV infections were similar in HOS, MIS and CTL groups. Antibody levels against HCoV were not significantly different in the three groups and were not related to the level of SARS-CoV-2 antibodies in the HOS and MIS groups. SARS-CoV-2 antibody profiles were different between HOS and MIS children.ConclusionPrior infection by seasonal coronaviruses, as assessed by serology, does not interfere with SARS-CoV-2 infection and related MIS in children.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Coronavirus OC43, Human , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome , Adolescent , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , Child , Child, Preschool , Cross-Sectional Studies , Female , France/epidemiology , Humans , Infant , Infant, Newborn , Male , Paris , Seasons , Serologic Tests/methods , Spike Glycoprotein, Coronavirus
9.
Article in English | MEDLINE | ID: mdl-32179525

ABSTRACT

The quinoline MK-571 is the most commonly used inhibitor of multidrug resistance protein-1 (MRP-1) but was originally developed as a cysteinyl leukotriene receptor 1 (CysLTR1) antagonist. While studying the modulatory effect of MRP-1 on anti-hepatitis C virus (HCV) direct-acting antiviral (DAA) efficiency, we observed an unexpected anti-HCV effect of compound MK-571 alone. This anti-HCV activity was characterized in Huh7.5 cells stably harboring a subgenomic genotype 1b replicon. A dose-dependent decrease of HCV RNA levels was observed upon MK-571 administration, with a 50% effective concentration (EC50 ± standard deviation) of 9 ± 0.3 µM and a maximum HCV RNA level reduction of approximatively 1 log10 MK-571 also reduced the replication of the HCV full-length J6/JFH1 model in a dose-dependent manner. However, probenecid and apigenin homodimer (APN), two specific inhibitors of MRP-1, had no effect on HCV replication. In contrast, the CysLTR1 antagonist SR2640 increased HCV-subgenomic replicon (SGR) RNA levels in a dose-dependent manner, with a maximum increase of 10-fold. In addition, a combination of natural CysLTR1 agonist (LTD4) or antagonists (zafirlukast, cinalukast, and SR2640) with MK-571 completely reversed its antiviral effect, suggesting its anti-HCV activity is related to CysLTR1 rather to MRP-1 inhibition. In conclusion, we showed that MK-571 inhibits HCV replication in hepatoma cell cultures by acting as a CysLTR1 receptor antagonist, thus unraveling a new host-virus interaction in the HCV life cycle.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Quinolines , Antiviral Agents/pharmacology , Hepacivirus/genetics , Humans , Propionates , Quinolines/pharmacology , Receptors, Leukotriene , Replicon , Virus Replication
10.
Euro Surveill ; 25(26)2020 07.
Article in English | MEDLINE | ID: mdl-32643599

ABSTRACT

Following SARS-CoV-2 emergence in China, a specific surveillance was implemented in France. Phylogenetic analysis of sequences retrieved through this surveillance suggests that detected initial introductions, involving non-clade G viruses, did not seed local transmission. Nevertheless, identification of clade G variants subsequently circulating in the country, with the earliest from a patient who neither travelled to risk areas nor had contact with travellers, suggests that SARS-CoV-2 might have been present before the first recorded local cases.


Subject(s)
Coronavirus Infections/genetics , Coronavirus/genetics , Disease Outbreaks/prevention & control , Sentinel Surveillance , Betacoronavirus , COVID-19 , Coronavirus/classification , Coronavirus/isolation & purification , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , France/epidemiology , Genome, Viral/genetics , Humans , Pandemics/prevention & control , Phylogeny , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sequence Analysis , Viral Proteins/genetics
11.
J Viral Hepat ; 26(2): 278-286, 2019 02.
Article in English | MEDLINE | ID: mdl-30339311

ABSTRACT

Nucleoside and nucleotide analogues (NUCs) targeting hepatitis B virus are capable of selecting resistant viruses upon long-term administration as monotherapies. The prevalence of resistance-associated substitutions (RASs) and fitness-associated substitutions at baseline of NUC therapy and their impact on treatment responses remain unknown. A total of 232 treatment-naïve patients chronically infected with hepatitis B virus (HBV) consecutively referred for the first time to one of French reference centres were included. The nearly full-length HBV reverse transcriptase was sequenced by means of deep sequencing, and the sequences were analysed. RASs were detected in 25% of treatment-naïve patients, generally representing low proportions of the viral quasispecies. All amino acid positions known to be associated with HBV resistance to currently approved NUCs or with increased fitness of resistant variants were affected, except position 80. RASs at positions involved in lamivudine, telbivudine and adefovir resistance were the most frequently detected. All patients with RASs detectable by next-generation sequencing at baseline who were treatment-eligible and treated with currently recommended drugs achieved a virological response. The presence of pre-existing HBV RASs has no impact on the outcome of therapy if potent drugs with a high barrier to resistance are used.


Subject(s)
Antiviral Agents/therapeutic use , Drug Resistance, Multiple, Viral/genetics , Hepatitis B virus/drug effects , Nucleosides/therapeutic use , Nucleotides/therapeutic use , Reverse Transcriptase Inhibitors/therapeutic use , Adult , Aged , Aged, 80 and over , Female , Genetic Fitness , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Prospective Studies , RNA-Directed DNA Polymerase/genetics
12.
J Biol Chem ; 292(31): 12860-12873, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28559285

ABSTRACT

Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans.


Subject(s)
Hepacivirus/pathogenicity , Hepatitis C/physiopathology , Hepatocytes/virology , Insulin Resistance , Prediabetic State/etiology , Absorption, Physiological , Animals , Cell Line, Tumor , Cells, Cultured , Gene Expression Regulation , Gluconeogenesis , Glucose/metabolism , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Hepacivirus/genetics , Hepacivirus/metabolism , Hepatitis C/metabolism , Hepatitis C/pathology , Hepatitis C/virology , Hepatocytes/metabolism , Hepatocytes/pathology , Male , Mice, Transgenic , Muscle, Striated/metabolism , Muscle, Striated/virology , Open Reading Frames , Phosphorylation , Prediabetic State/virology , Protein Processing, Post-Translational , RNA/metabolism , Specific Pathogen-Free Organisms , Viral Proteins/genetics , Viral Proteins/metabolism
13.
Article in English | MEDLINE | ID: mdl-29760125

ABSTRACT

Although members of the Flaviviridae display high incidence, morbidity, and mortality rates, the development of specific antiviral drugs for each virus is unlikely. Cyclophilins, a family of host peptidyl-prolyl cis-trans isomerases (PPIases), play a pivotal role in the life cycles of many viruses and therefore represent an attractive target for broad-spectrum antiviral development. We report here the pangenotypic anti-hepatitis C virus (HCV) activity of a small-molecule cyclophilin inhibitor (SMCypI). Mechanistic and modeling studies revealed that the SMCypI bound to cyclophilin A in competition with cyclosporine (CsA), inhibited its PPIase activity, and disrupted the CypA-nonstructural protein 5A (NS5A) interaction. Resistance selection showed that the lead SMCypI hardly selected amino acid substitutions conferring low-level or no resistance in vitro Interestingly, the SMCypI selected D320E and Y321H substitutions, located in domain II of the NS5A protein. These substitutions were previously associated with low-level resistance to cyclophilin inhibitors such as alisporivir. Finally, the SMCypI inhibited the replication of other members of the Flaviviridae family with higher 50% effective concentrations (EC50s) than for HCV. Thus, because of its chemical plasticity and simplicity of synthesis, our new family of SMCypIs represents a promising new class of drugs with the potential for broad-spectrum anti-Flaviviridae activity as well as an invaluable tool to explore the role of cyclophilins in viral life cycles.


Subject(s)
Antiviral Agents/pharmacology , Cyclophilin A/antagonists & inhibitors , Hepacivirus/drug effects , Viral Nonstructural Proteins/metabolism , Amino Acid Substitution/genetics , Cyclophilin A/metabolism , Cyclosporine/pharmacology , Drug Resistance, Viral/genetics , Hepacivirus/growth & development , Hepatitis C/drug therapy , Humans , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
14.
J Antimicrob Chemother ; 70(12): 3339-44, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26396157

ABSTRACT

OBJECTIVES: ROCnRAL ANRS-157 was a single-arm study designed to evaluate a switch to a maraviroc (300 mg twice a day) plus raltegravir (400 mg twice a day) regimen in virologically suppressed HIV-1-infected patients (ClinicalTrials.gov: NCT01420523). The aim of this work was to investigate the factors associated with virological failure (VF) (5/44 patients) or virological rebound defined as one viral load (VL) >50 copies/mL or VL >1 copy/mL. METHODS: At baseline (BL), ultradeep sequencing (UDS) of DNA gp120 V3 and integrase regions and quantification of HIV DNA were performed in PBMCs. Tropism, VL, BL ultrasensitive HIV RNA VL, BL HIV DNA VL, subtype, age, ethnicity, transmission group, AIDS status, nadir CD4 and BL CD4 cell count, time since HIV diagnosis, duration of ART and suppressed viraemia, VL zenith, CD4/CD8 ratio and BL CD8 cell count were investigated as potential factors associated with virological rebound. RESULTS: The proportion of patients with VL <1 copy/mL did not evolve over time. Among the 44 included patients, 3 had minority X4-tropic viruses determined by UDS at BL and one of them presented VF. Minority resistant variants in the integrase gene were detected at BL at two positions (E138 and G140) for three patients who did not have VF. Among all studied factors, none was associated with virological rebound. CONCLUSIONS: Maraviroc plus raltegravir failed to maintain virological suppression in virologically suppressed HIV-1-infected patients. However, neither minority viral variants nor ultrasensitive viraemia was found to be a predictive factor of VF or virological rebound in this context.


Subject(s)
Anti-HIV Agents/therapeutic use , Cyclohexanes/therapeutic use , HIV Infections/drug therapy , HIV-1/isolation & purification , Raltegravir Potassium/therapeutic use , Triazoles/therapeutic use , HIV Infections/virology , Maraviroc , Risk Factors , Treatment Failure , Viral Load
15.
bioRxiv ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38045308

ABSTRACT

The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolated and characterized XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in January 2024. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicated in IGROV-1 but no longer in Vero E6 and were not markedly fusogenic. They potently infected nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remained active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals were markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhanced NAb responses against both XBB and BA.2.86 variants. JN.1 displayed lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.

16.
Nat Commun ; 15(1): 2254, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480689

ABSTRACT

The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolate and characterize XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in January 2024. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicate in IGROV-1 but no longer in Vero E6 and are not markedly fusogenic. They potently infect nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remain active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals are markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhances NAb responses against both XBB and BA.2.86 variants. JN.1 displays lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , Epithelial Cells , Exercise
17.
EBioMedicine ; 104: 105181, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838469

ABSTRACT

BACKGROUND: Although several SARS-CoV-2-related coronaviruses (SC2r-CoVs) were discovered in bats and pangolins, the differences in virological characteristics between SARS-CoV-2 and SC2r-CoVs remain poorly understood. Recently, BANAL-20-236 (B236) was isolated from a rectal swab of Malayan horseshoe bat and was found to lack a furin cleavage site (FCS) in the spike (S) protein. The comparison of its virological characteristics with FCS-deleted SARS-CoV-2 (SC2ΔFCS) has not been conducted yet. METHODS: We prepared human induced pluripotent stem cell (iPSC)-derived airway and lung epithelial cells and colon organoids as human organ-relevant models. B236, SARS-CoV-2, and artificially generated SC2ΔFCS were used for viral experiments. To investigate the pathogenicity of B236 in vivo, we conducted intranasal infection experiments in hamsters. FINDINGS: In human iPSC-derived airway epithelial cells, the growth of B236 was significantly lower than that of the SC2ΔFCS. A fusion assay showed that the B236 and SC2ΔFCS S proteins were less fusogenic than the SARS-CoV-2 S protein. The infection experiment in hamsters showed that B236 was less pathogenic than SARS-CoV-2 and even SC2ΔFCS. Interestingly, in human colon organoids, the growth of B236 was significantly greater than that of SARS-CoV-2. INTERPRETATION: Compared to SARS-CoV-2, we demonstrated that B236 exhibited a tropism toward intestinal cells rather than respiratory cells. Our results are consistent with a previous report showing that B236 is enterotropic in macaques. Altogether, our report strengthens the assumption that SC2r-CoVs in horseshoe bats replicate primarily in the intestinal tissues rather than respiratory tissues. FUNDING: This study was supported in part by AMED ASPIRE (JP23jf0126002, to Keita Matsuno, Kazuo Takayama, and Kei Sato); AMED SCARDA Japan Initiative for World-leading Vaccine Research and Development Centers "UTOPIA" (JP223fa627001, to Kei Sato), AMED SCARDA Program on R&D of new generation vaccine including new modality application (JP223fa727002, to Kei Sato); AMED SCARDA Hokkaido University Institute for Vaccine Research and Development (HU-IVReD) (JP223fa627005h0001, to Takasuke Fukuhara, and Keita Matsuno); AMED Research Program on Emerging and Re-emerging Infectious Diseases (JP21fk0108574, to Hesham Nasser; JP21fk0108493, to Takasuke Fukuhara; JP22fk0108617 to Takasuke Fukuhara; JP22fk0108146, to Kei Sato; JP21fk0108494 to G2P-Japan Consortium, Keita Matsuno, Shinya Tanaka, Terumasa Ikeda, Takasuke Fukuhara, and Kei Sato; JP21fk0108425, to Kazuo Takayama and Kei Sato; JP21fk0108432, to Kazuo Takayama, Takasuke Fukuhara and Kei Sato; JP22fk0108534, Terumasa Ikeda, and Kei Sato; JP22fk0108511, to Yuki Yamamoto, Terumasa Ikeda, Keita Matsuno, Shinya Tanaka, Kazuo Takayama, Takasuke Fukuhara, and Kei Sato; JP22fk0108506, to Kazuo Takayama and Kei Sato); AMED Research Program on HIV/AIDS (JP22fk0410055, to Terumasa Ikeda; and JP22fk0410039, to Kei Sato); AMED Japan Program for Infectious Diseases Research and Infrastructure (JP22wm0125008 to Keita Matsuno); AMED CREST (JP21gm1610005, to Kazuo Takayama; JP22gm1610008, to Takasuke Fukuhara; JST PRESTO (JPMJPR22R1, to Jumpei Ito); JST CREST (JPMJCR20H4, to Kei Sato); JSPS KAKENHI Fund for the Promotion of Joint International Research (International Leading Research) (JP23K20041, to G2P-Japan Consortium, Keita Matsuno, Takasuke Fukuhara and Kei Sato); JST SPRING (JPMJSP2108 to Shigeru Fujita); JSPS KAKENHI Grant-in-Aid for Scientific Research C (22K07103, to Terumasa Ikeda); JSPS KAKENHI Grant-in-Aid for Scientific Research B (21H02736, to Takasuke Fukuhara); JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (22K16375, to Hesham Nasser; 20K15767, to Jumpei Ito); JSPS Core-to-Core Program (A. Advanced Research Networks) (JPJSCCA20190008, to Kei Sato); JSPS Research Fellow DC2 (22J11578, to Keiya Uriu); JSPS Research Fellow DC1 (23KJ0710, to Yusuke Kosugi); JSPS Leading Initiative for Excellent Young Researchers (LEADER) (to Terumasa Ikeda); World-leading Innovative and Smart Education (WISE) Program 1801 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (to Naganori Nao); Ministry of Health, Labour and Welfare (MHLW) under grant 23HA2010 (to Naganori Nao and Keita Matsuno); The Cooperative Research Program (Joint Usage/Research Center program) of Institute for Life and Medical Sciences, Kyoto University (to Kei Sato); International Joint Research Project of the Institute of Medical Science, the University of Tokyo (to Terumasa Ikeda and Takasuke Fukuhara); The Tokyo Biochemical Research Foundation (to Kei Sato); Takeda Science Foundation (to Terumasa Ikeda and Takasuke Fukuhara); Mochida Memorial Foundation for Medical and Pharmaceutical Research (to Terumasa Ikeda); The Naito Foundation (to Terumasa Ikeda); Hokuto Foundation for Bioscience (to Tomokazu Tamura); Hirose Foundation (to Tomokazu Tamura); and Mitsubishi Foundation (to Kei Sato).


Subject(s)
COVID-19 , Chiroptera , SARS-CoV-2 , Animals , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Humans , COVID-19/virology , Chiroptera/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Organoids/virology , Organoids/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/virology , Cricetinae , Furin/metabolism , Epithelial Cells/virology , Vero Cells , Chlorocebus aethiops
18.
Clin Exp Med ; 23(8): 4955-4965, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37906387

ABSTRACT

It has been suggested that the outcomes of coronavirus disease 2019 (COVID-19) are better in individuals having recently received an influenza vaccine than in non-vaccinated individuals. We hypothesized that this association depends on the humoral responses against influenza viruses. We aim to assess the relationship between the humoral immunity against influenza and the 3-month all-cause mortality among hospitalized older patients with COVID-19. We performed an exploratory retrospective study of older patients (aged 65 and over) hospitalized for confirmed COVID-19 between November 2020 and June 2021. Previous humoral responses to influenza viruses were assessed using a hemagglutination inhibition assay on routinely collected blood samples. The study's primary outcome was the 3-month all-cause mortality, and the secondary outcomes were severe COVID-19 (oxygen requirement ≥ 6 L/min or ventilatory support) and complications (kidney or heart failure, thrombosis and bacterial infection). In the cohort of 95 patients with COVID-19, immunity against influenza vaccine subtypes/lineages was not significantly associated with 3-month all-cause mortality, with an OR [95%CI] of 0.22 [0.02-1.95] (p = 0.174) for the H1N1pdm09 subtype, 0.21 [0.03-1.24] (p = 0.081) for A/Hong Kong/2671/2019 H3N2 subtype, 1.98 [0.51-8.24] (p = 0.329) for the B/Victoria lineage, and 1.82 [0.40-8.45] (p = 0.437) for the B/Yamagata lineage. Immunity against influenza vaccine subtypes/lineages was also not significantly associated with severity and complication. Immunity against influenza subtypes/lineages included in the 2020-2021 vaccine was not associated with a lower 3-month all-cause mortality among COVID-19 hospitalized patients.Trial registration: The study was approved by a hospital committee with competency for research not requiring approval by an institutional review board (Tours University Medical Center, Tours, France: reference: 2021_015). All patients give the informed consent.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Aged , Influenza, Human/prevention & control , Retrospective Studies , Influenza A Virus, H3N2 Subtype
19.
bioRxiv ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36778275

ABSTRACT

Soon after the beginning of the COVID-19 pandemic in early 2020, the Betacoronavirus SARS-CoV-2 infection of several mink farms breeding American minks ( Neovison vison ) for fur was detected in several countries of Europe. The risk of a new reservoir formation and of a reverse zoonosis from minks was then a major concern. The aim of this study was to investigate the four French mink farms for the circulation of SARS-CoV-2 at the end of 2020. The investigations took place during the slaughtering period thus facilitating different types of sampling (swabs and blood). In one of the four mink farms, 96.6% of serum samples were positive in SARS-CoV-2 ELISA coated with purified N protein recombinant antigen and 54 out of 162 (33%) pharyngo-tracheal swabs were positive by RT-qPCR. The genetic variability among 12 SARS-CoV-2 genomes sequenced in this farm indicated the co-circulation of several lineages at the time of sampling. All SARS-CoV-2 genomes detected were nested within the 20A clade (Nextclade), together with SARS-CoV-2 genomes from humans sampled at the same period. The percentage of SARS-CoV-2 seropositivity by ELISA varied between 0.5 and 1.2% in the three other farms. Interestingly, among these three farms, 11 pharyngo-tracheal swabs and 3 fecal pools from two farms were positive by end-point RT-PCR for an Alphacoronavirus highly similar to a mink coronavirus sequence observed in Danish farms in 2015. In addition, a mink Caliciviridae was identified in one of the two positive farms for Alphacoronavirus . The clinical impact of these unapparent viral infections is not known. The co-infection of SARS-CoV-2 with other viruses in mink farms could contribute to explain the diversity of clinical symptoms noted in different infected farms in Europe. In addition, the co-circulation of an Alphacoronavirus and SARS-CoV-2 within a mink farm would increase potentially the risk of viral recombination between alpha and betacoronaviruses already suggested in wild and domestic animals, as well as in humans. Author summary: France is not a country of major mink fur production. Following the SARS-CoV-2 contamination of mink farms in Denmark and the Netherlands, the question arose for the four French farms.The investigation conducted at the same time in the four farms revealed the contamination of one of them by a variant different from the one circulating at the same time in Denmark and the Netherlands mink farms. Investigation of three other farms free of SARS-CoV-2 contamination revealed the circulation of other viruses including a mink Alphacoronavirus and Caliciviridae , which could modify the symptomatology of SARS-CoV-2 infection in minks.

20.
PLoS One ; 18(8): e0290444, 2023.
Article in English | MEDLINE | ID: mdl-37624818

ABSTRACT

Soon after the beginning of the COVID-19 pandemic in early 2020, the Betacoronavirus SARS-CoV-2 infection of several mink farms breeding American minks (Neovison vison) for fur was detected in various European countries. The risk of a new reservoir being formed and of a reverse zoonosis from minks quickly became a major concern. The aim of this study was to investigate the four French mink farms to see whether SARS-CoV-2 was circulating there in late 2020. The investigations took place during the slaughtering period, thus facilitating different types of sampling (swabs and blood). On one of the four mink farms, 96.6% of serum samples were positive when tested with a SARS-CoV-2 ELISA coated with purified N protein recombinant antigen, and 54 out of 162 (33%) pharyngo-tracheal swabs were positive by RT-qPCR. The genetic variability among 12 SARS-CoV-2 genomes sequenced from this farm indicated the co-circulation of several lineages at the time of sampling. All the SARS-CoV-2 genomes detected were nested within the 20A clade (Nextclade), together with SARS-CoV-2 genomes from humans sampled during the same period. The percentage of SARS-CoV-2 seropositivity by ELISA varied between 0.3 and 1.1% on the other three farms. Interestingly, among these three farms, 11 pharyngo-tracheal swabs and 3 fecal pools from two farms were positive by end-point RT-PCR for an Alphacoronavirus very similar to a mink coronavirus sequence observed on Danish farms in 2015. In addition, a mink Caliciviridae was identified on one of the two farms positive for Alphacoronavirus. The clinical impact of these inapparent viral infections is not known. The co-infection of SARS-CoV-2 with other viruses on mink farms could help explain the diversity of clinical symptoms noted on different infected farms in Europe. In addition, the co-circulation of an Alphacoronavirus and SARS-CoV-2 on a mink farm would potentially increase the risk of viral recombination between alpha and betacoronaviruses as already suggested in wild and domestic animals, as well as in humans.


Subject(s)
Alphacoronavirus , COVID-19 , Animals , Humans , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2/genetics , Mink , Farms , Pandemics , France , Asymptomatic Infections
SELECTION OF CITATIONS
SEARCH DETAIL