Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Eur Respir J ; 61(4)2023 04.
Article in English | MEDLINE | ID: mdl-36549711

ABSTRACT

BACKGROUND: Receptor-interacting protein kinase 1 (RIPK1) is a key mediator of regulated cell death (including apoptosis and necroptosis) and inflammation, both drivers of COPD pathogenesis. We aimed to define the contribution of RIPK1 kinase-dependent cell death and inflammation in the pathogenesis of COPD. METHODS: We assessed RIPK1 expression in single-cell RNA sequencing (RNA-seq) data from human and mouse lungs, and validated RIPK1 levels in lung tissue of COPD patients via immunohistochemistry. Next, we assessed the consequences of genetic and pharmacological inhibition of RIPK1 kinase activity in experimental COPD, using Ripk1 S25D/S25D kinase-deficient mice and the RIPK1 kinase inhibitor GSK'547. RESULTS: RIPK1 expression increased in alveolar type 1 (AT1), AT2, ciliated and neuroendocrine cells in human COPD. RIPK1 protein levels were significantly increased in airway epithelium of COPD patients compared with never-smokers and smokers without airflow limitation. In mice, exposure to cigarette smoke (CS) increased Ripk1 expression similarly in AT2 cells, and further in alveolar macrophages and T-cells. Genetic and/or pharmacological inhibition of RIPK1 kinase activity significantly attenuated airway inflammation upon acute and subacute CS exposure, as well as airway remodelling, emphysema, and apoptotic and necroptotic cell death upon chronic CS exposure. Similarly, pharmacological RIPK1 kinase inhibition significantly attenuated elastase-induced emphysema and lung function decline. Finally, RNA-seq on lung tissue of CS-exposed mice revealed downregulation of cell death and inflammatory pathways upon pharmacological RIPK1 kinase inhibition. CONCLUSIONS: RIPK1 kinase inhibition is protective in experimental models of COPD and may represent a novel promising therapeutic approach.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Mice , Animals , Lung , Cell Death , Inflammation/metabolism , Mice, Inbred C57BL , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
2.
Mol Cell ; 60(1): 63-76, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26344099

ABSTRACT

TNF is a master pro-inflammatory cytokine. Activation of TNFR1 by TNF can result in both RIPK1-independent apoptosis and RIPK1 kinase-dependent apoptosis or necroptosis. These cell death outcomes are regulated by two distinct checkpoints during TNFR1 signaling. TNF-mediated NF-κB-dependent induction of pro-survival or anti-apoptotic molecules is a well-known late checkpoint in the pathway, protecting cells from RIPK1-independent death. On the other hand, the molecular mechanism regulating the contribution of RIPK1 to cell death is far less understood. We demonstrate here that the IKK complex phosphorylates RIPK1 at TNFR1 complex I and protects cells from RIPK1 kinase-dependent death, independent of its function in NF-κB activation. We provide in vitro and in vivo evidence that inhibition of IKKα/IKKß or its upstream activators sensitizes cells to death by inducing RIPK1 kinase-dependent apoptosis or necroptosis. We therefore report on an unexpected, NF-κB-independent role for the IKK complex in protecting cells from RIPK1-dependent death downstream of TNFR1.


Subject(s)
I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Caspase 8/metabolism , Cell Death , Cell Line , Embryo, Mammalian/cytology , Fas-Associated Death Domain Protein/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Mice , Phosphorylation , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology
3.
Eur Respir J ; 59(5)2022 05.
Article in English | MEDLINE | ID: mdl-34588194

ABSTRACT

BACKGROUND: Chronic airway inflammation is the main driver of pathogenesis in respiratory diseases such as severe asthma, chronic obstructive pulmonary disease, cystic fibrosis (CF) and bronchiectasis. While the role of common pathogens in airway inflammation is widely recognised, the influence of other microbiota members is still poorly understood. METHODS: We hypothesised that the lung microbiota contains bacteria with immunomodulatory activity which modulate net levels of immune activation by key respiratory pathogens. Therefore, we assessed the immunomodulatory effect of several members of the lung microbiota frequently reported as present in CF lower respiratory tract samples. RESULTS: We show that Rothia mucilaginosa, a common resident of the oral cavity that is also often detectable in the lower airways in chronic disease, has an inhibitory effect on pathogen- or lipopolysaccharide-induced pro-inflammatory responses, in vitro (three-dimensional cell culture model) and in vivo (mouse model). Furthermore, in a cohort of adults with bronchiectasis, the abundance of Rothia species was negatively correlated with pro-inflammatory markers (interleukin (IL)-8 and IL-1ß) and matrix metalloproteinase (MMP)-1, MMP-8 and MMP-9 in sputum. Mechanistic studies revealed that R. mucilaginosa inhibits NF-κB pathway activation by reducing the phosphorylation of IκBα and consequently the expression of NF-κB target genes. CONCLUSIONS: These findings indicate that the presence of R. mucilaginosa in the lower airways potentially mitigates inflammation, which could in turn influence the severity and progression of chronic respiratory disorders.


Subject(s)
Bronchiectasis , Cystic Fibrosis , Animals , Anti-Inflammatory Agents/pharmacology , Bacteria , Bronchiectasis/microbiology , Humans , Inflammation , Lung , Mice , NF-kappa B , Sputum/microbiology
4.
Am J Respir Crit Care Med ; 201(11): 1358-1371, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32105156

ABSTRACT

Rationale: Respiratory syncytial virus (RSV) bronchiolitis causes significant infant mortality. Bronchiolitis is characterized by airway epithelial cell (AEC) death; however, the mode of death remains unknown.Objectives: To determine whether necroptosis contributes to RSV bronchiolitis pathogenesis via HMGB1 (high mobility group box 1) release.Methods: Nasopharyngeal samples were collected from children presenting to the hospital with acute respiratory infection. Primary human AECs and neonatal mice were inoculated with RSV and murine Pneumovirus, respectively. Necroptosis was determined via viability assays and immunohistochemistry for RIPK1 (receptor-interacting protein kinase-1), MLKL (mixed lineage kinase domain-like pseudokinase) protein, and caspase-3. Necroptosis was blocked using pharmacological inhibitors and RIPK1 kinase-dead knockin mice.Measurements and Main Results: HMGB1 levels were elevated in nasopharyngeal samples of children with acute RSV infection. RSV-induced epithelial cell death was associated with increased phosphorylated RIPK1 and phosphorylated MLKL but not active caspase-3 expression. Inhibition of RIPK1 or MLKL attenuated RSV-induced HMGB1 translocation and release, and lowered viral load. MLKL inhibition increased active caspase-3 expression in a caspase-8/9-dependent manner. In susceptible mice, Pneumovirus infection upregulated RIPK1 and MLKL expression in the airway epithelium at 8 to 10 days after infection, coinciding with AEC sloughing, HMGB1 release, and neutrophilic inflammation. Genetic or pharmacological inhibition of RIPK1 or MLKL attenuated these pathologies, lowered viral load, and prevented type 2 inflammation and airway remodeling. Necroptosis inhibition in early life ameliorated asthma progression induced by viral or allergen challenge in later life.Conclusions: Pneumovirus infection induces AEC necroptosis. Inhibition of necroptosis may be a viable strategy to limit the severity of viral bronchiolitis and break its nexus with asthma.


Subject(s)
Bronchiolitis/virology , Epithelial Cells/metabolism , Epithelial Cells/pathology , HMGB1 Protein/metabolism , Necroptosis , Respiratory Mucosa/cytology , Respiratory Syncytial Virus Infections/metabolism , Animals , Child, Preschool , Humans , Infant , Mice , Prospective Studies
5.
Cell Mol Life Sci ; 73(11-12): 2165-76, 2016 06.
Article in English | MEDLINE | ID: mdl-27066894

ABSTRACT

Tumor necrosis factor (TNF) is a master pro-inflammatory cytokine, and inappropriate TNF signaling is implicated in the pathology of many inflammatory diseases. Ligation of TNF to its receptor TNFR1 induces the transient formation of a primary membrane-bound signaling complex, known as complex I, that drives expression of pro-survival genes. Defective complex I activation results in induction of cell death, in the form of apoptosis or necroptosis. This switch occurs via internalization of complex I components and assembly and activation of secondary cytoplasmic death complexes, respectively known as complex II and necrosome. In this review, we discuss the crucial regulatory functions of ubiquitination-a post-translational protein modification consisting of the covalent attachment of ubiquitin, and multiples thereof, to target proteins-to the various steps of TNFR1 signaling leading to necroptosis.


Subject(s)
Apoptosis/physiology , Necrosis/pathology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ubiquitination/physiology , Animals , Mice , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction
6.
Methods ; 61(2): 117-29, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23473780

ABSTRACT

Cell death research during the last decades has revealed many molecular signaling cascades, often leading to distinct cell death modalities followed by immune responses. For historical reasons, the prototypic and best characterized cell death modes are apoptosis and necrosis (dubbed necroptosis, to indicate that it is regulated). There is mounting evidence for the interplay between cell death modalities and their redundant action when one of them is interfered with. This increase in cell death research points to the need for characterizing cell death pathways by different approaches at the biochemical, cellular and if possible, physiological level. In this review we present a selection of techniques to detect cell death and to distinguish necrosis from apoptosis. The distinction should be based on pharmacologic and transgenic approaches in combination with several biochemical and morphological criteria. A particular problem in defining necrosis is that in the absence of phagocytosis, apoptotic cells become secondary necrotic and develop morphologic and biochemical features of primary necrosis.


Subject(s)
Apoptosis/genetics , Cell Membrane/metabolism , Fibroblasts/metabolism , Macrophages/metabolism , Animals , Caspases/genetics , Caspases/metabolism , Cell Line , Cell Membrane/ultrastructure , DNA Fragmentation , Enzyme Activation , Fibroblasts/ultrastructure , Flow Cytometry , Macrophages/ultrastructure , Mice , Microscopy , Necrosis/genetics , Necrosis/pathology , Phagocytosis , Time-Lapse Imaging
7.
J Biol Chem ; 287(18): 14863-72, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22362767

ABSTRACT

Receptor-interacting protein kinase 1 (RIPK1) is an important component of the tumor necrosis factor receptor 1 (TNFR1) signaling pathway. Depending on the cell type and conditions, RIPK1 mediates MAPK and NF-κB activation as well as cell death. Using a mutant form of RIPK1 (RIPK1ΔID) lacking the intermediate domain (ID), we confirm the requirement of this domain for activation of these signaling events. Moreover, expression of RIPK1ΔID resulted in enhanced recruitment of caspase-8 to the TNFR1 complex II component Fas-associated death domain (FADD), which allowed a shift from TNF-induced necroptosis to apoptosis in L929 cells. Addition of the RIPK1 kinase inhibitor necrostatin-1 strongly reduced recruitment of RIPK1 and caspase-8 to FADD and subsequent apoptosis, indicating a role for RIPK1 kinase activity in apoptotic complex formation. Our study shows that RIPK1 has an anti-apoptotic function residing in its ID and demonstrates a cellular system as an elegant genetic model for RIPK1 kinase-dependent apoptosis that, in contrast to the Smac mimetic model, does not rely on depletion of cellular inhibitor of apoptosis protein 1 and 2 (cIAP1/2).


Subject(s)
Apoptosis , MAP Kinase Signaling System , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Apoptosis Regulatory Proteins , Baculoviral IAP Repeat-Containing 3 Protein , Carrier Proteins/genetics , Carrier Proteins/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Cell Line , Humans , Imidazoles/pharmacology , Indoles/pharmacology , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutation , Necrosis/genetics , Necrosis/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitin-Protein Ligases
8.
Cell Death Dis ; 14(11): 755, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980412

ABSTRACT

Plasma membrane permeabilization (PMP) is a defining feature of regulated necrosis. It allows the extracellular release of damage-associated molecular patterns (DAMPs) that trigger sterile inflammation. The pore forming molecules MLKL and GSDMs drive PMP in necroptosis and pyroptosis, respectively, but the process of PMP remains unclear in many other forms of regulated necrosis. Here, we identified NINJ1 as a crucial regulator of PMP and consequent DAMP release during ferroptosis, parthanatos, H2O2-induced necrosis and secondary necrosis. Importantly, the membrane-permeabilizing function of NINJ1 takes place after the metabolic death of the cells and is independent of the pore-forming molecules MLKL, GSDMD and GSDME. During ferroptosis, NINJ1 acts downstream of lipid peroxidation, which suggested a role for reactive oxygen species (ROS) in NINJ1 activation. Reactive oxygen species were however neither sufficient nor required to trigger NINJ1-dependent PMP. Instead, we found that NINJ1 oligomerization is induced by the swelling of the cell and that its permeabilizing potential still requires an addition, and yet to be discovered, activation mechanism.


Subject(s)
Apoptosis , Hydrogen Peroxide , Humans , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Apoptosis/physiology , Necrosis/metabolism , Cell Membrane/metabolism , Nerve Growth Factors/metabolism , Cell Adhesion Molecules, Neuronal/metabolism
9.
Front Immunol ; 13: 1067164, 2022.
Article in English | MEDLINE | ID: mdl-36532075

ABSTRACT

The Inhibitor of Kappa B Kinase (IKK) complex is a critical regulator of NF-κB activation. More recently, IKK has also been shown to repress RIPK1 dependent extrinsic cell death pathways by directly phosphorylating RIPK1 at serine 25. In T cells, IKK expression is essential for normal development in the thymus, by promoting survival of thymocytes independently of NF-κB activation. RIPK1 undergoes extensive phosphorylation following TNF stimulation in T cells, though which targets are required to repress RIPK1 has not been defined. Here, we show that TNF induced phosphorylation of RIPK1 at S25 is IKK dependent. We test the relevance of this phosphorylation event in T cells using mice with a RIPK1S25D phosphomimetic point mutation to endogenous RIPK1. We find that this mutation protects T cells from TNF induced cell death when IKK activity is inhibited in vitro, and can rescues development of IKK deficient thymocytes in vivo to a degree comparable with kinase dead RIPK1D138N. Together, these data show that phosphorylation of RIPK1S25 by IKK represents a key regulatory event promoting survival of T cells by IKK.


Subject(s)
NF-kappa B , Serine , Mice , Animals , Phosphorylation , NF-kappa B/metabolism , Serine/metabolism , Apoptosis , Tumor Necrosis Factor-alpha/metabolism , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Cell Death , Thymocytes/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
10.
Biomedicines ; 10(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35625752

ABSTRACT

RIPK1 (receptor-interacting serine/threonine-protein kinase 1) enzymatic activity drives both apoptosis and necroptosis, a regulated form of necrosis. Because necroptosis is involved in necrotic core development in atherosclerotic plaques, we investigated the effects of a RIPK1S25D/S25D mutation, which prevents activation of RIPK1 kinase, on atherogenesis in ApoE-/- mice. After 16 weeks of western-type diet (WD), atherosclerotic plaques from ApoE-/- RIPK1S25D/S25D mice were significantly larger compared to ApoE-/- RIPK1+/+ mice (167 ± 34 vs. 78 ± 18 × 103 µm2, p = 0.01). Cell numbers (350 ± 34 vs. 154 ± 33 nuclei) and deposition of glycosaminoglycans (Alcian blue: 31 ± 6 vs. 14 ± 4%, p = 0.023) were increased in plaques from ApoE-/- RIPK1S25D/S25D mice while macrophage content (Mac3: 2.3 ± 0.4 vs. 9.8 ± 2.4%, p = 0.012) was decreased. Plaque apoptosis was not different between both groups. In contrast, pharmacological inhibition of RIPK1 kinase with GSK'547 (10 mg/kg BW/day) in ApoE-/- Fbn1C1039G+/- mice, a model of advanced atherosclerosis, did not alter plaque size after 20 weeks WD, but induced apoptosis (TUNEL: 136 ± 20 vs. 62 ± 9 cells/mm2, p = 0.004). In conclusion, inhibition of RIPK1 kinase activity accelerated plaque progression in ApoE-/- RIPK1S25D/S25D mice and induced apoptosis in GSK'547-treated ApoE-/- Fbn1C1039G+/- mice. Thus, without directly comparing the genetic and pharmacological studies, it can be concluded that targeting RIPK1 kinase activity does not limit atherogenesis.

11.
Cell Death Dis ; 12(7): 699, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262020

ABSTRACT

Butylate hydroxyanisole (BHA) is a synthetic phenol that is widely utilized as a preservative by the food and cosmetic industries. The antioxidant properties of BHA are also frequently used by scientists to claim the implication of reactive oxygen species (ROS) in various cellular processes, including cell death. We report on the surprising finding that BHA functions as a direct inhibitor of RIPK1, a major signaling hub downstream of several immune receptors. Our in silico analysis predicts binding of 3-BHA, but not 2-BHA, to RIPK1 in an inactive DLG-out/Glu-out conformation, similar to the binding of the type III inhibitor Nec-1s to RIPK1. This predicted superior inhibitory capacity of 3-BHA over 2-BHA was confirmed in cells and using in vitro kinase assays. We demonstrate that the reported protective effect of BHA against tumor necrosis factor (TNF)-induced necroptotic death does not originate from ROS scavenging but instead from direct RIPK1 enzymatic inhibition, a finding that most probably extends to other reported effects of BHA. Accordingly, we show that BHA not only protects cells against RIPK1-mediated necroptosis but also against RIPK1 kinase-dependent apoptosis. We found that BHA treatment completely inhibits basal and induced RIPK1 enzymatic activity in cells, monitored at the level of TNFR1 complex I under apoptotic conditions or in the cytosol under necroptosis. Finally, we show that oral administration of BHA protects mice from RIPK1 kinase-dependent lethality caused by TNF injection, a model of systemic inflammatory response syndrome. In conclusion, our results demonstrate that BHA can no longer be used as a strict antioxidant and that new functions of RIPK1 may emerge from previously reported effects of BHA.


Subject(s)
Apoptosis/drug effects , Butylated Hydroxyanisole/pharmacology , Fibroblasts/drug effects , Food Additives/pharmacology , Necroptosis/drug effects , Protein Kinase Inhibitors/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Systemic Inflammatory Response Syndrome/prevention & control , Animals , Antioxidants/pharmacology , Disease Models, Animal , Female , Fibroblasts/enzymology , Fibroblasts/pathology , HT29 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Docking Simulation , Protein Binding , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Systemic Inflammatory Response Syndrome/chemically induced , Systemic Inflammatory Response Syndrome/enzymology , Systemic Inflammatory Response Syndrome/pathology , Tumor Necrosis Factor-alpha
12.
Trends Cell Biol ; 30(3): 189-200, 2020 03.
Article in English | MEDLINE | ID: mdl-31959328

ABSTRACT

The serine/threonine kinase RIPK1 has emerged as a crucial component of the inflammatory response activated downstream of several immune receptors, where it paradoxically functions as a scaffold to protect the cell from death or instead as an active kinase to promote the killing of the cell. While RIPK1 kinase-dependent cell death has revealed its physiological importance in the context of microbial infection, aberrant activation of RIPK1 is also demonstrated to promote cell death-driven inflammatory pathologies, highlighting the importance of fundamentally understanding proper RIPK1 regulation. Recent advances in the field demonstrated the crucial role of phosphorylation in the fine-tuning of RIPK1 activation and, additionally, question the exact mechanism by which RIPK1 enzymatic activity transmits the death signal.


Subject(s)
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Cell Death , Humans , Models, Biological , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Ubiquitination
13.
Nat Commun ; 10(1): 1729, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988283

ABSTRACT

RIPK1 regulates cell death and inflammation through kinase-dependent and -independent mechanisms. As a scaffold, RIPK1 inhibits caspase-8-dependent apoptosis and RIPK3/MLKL-dependent necroptosis. As a kinase, RIPK1 paradoxically induces these cell death modalities. The molecular switch between RIPK1 pro-survival and pro-death functions remains poorly understood. We identify phosphorylation of RIPK1 on Ser25 by IKKs as a key mechanism directly inhibiting RIPK1 kinase activity and preventing TNF-mediated RIPK1-dependent cell death. Mimicking Ser25 phosphorylation (S > D mutation) protects cells and mice from the cytotoxic effect of TNF in conditions of IKK inhibition. In line with their roles in IKK activation, TNF-induced Ser25 phosphorylation of RIPK1 is defective in TAK1- or SHARPIN-deficient cells and restoring phosphorylation protects these cells from TNF-induced death. Importantly, mimicking Ser25 phosphorylation compromises the in vivo cell death-dependent immune control of Yersinia infection, a physiological model of TAK1/IKK inhibition, and rescues the cell death-induced multi-organ inflammatory phenotype of the SHARPIN-deficient mice.


Subject(s)
Apoptosis , Models, Immunological , Receptor-Interacting Protein Serine-Threonine Kinases/physiology , Animals , Caspase 8/genetics , Caspase 8/metabolism , Caspase 8/physiology , Cell Line , I-kappa B Kinase/metabolism , I-kappa B Kinase/physiology , Immunity/physiology , Mice , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Serine/chemistry , Serine/metabolism , Yersinia , Yersinia Infections/immunology
14.
Methods Mol Biol ; 1857: 171-179, 2018.
Article in English | MEDLINE | ID: mdl-30136241

ABSTRACT

Receptor-interacting protein kinase 1 (RIPK1) is a component of the TNFR1 signaling complex (also known as complex I or TNFR-SC), where its ubiquitylation by cIAP1/2 and LUBAC serves to initiate prosurvival and proinflammatory responses through activation of the MAPK and NF-κB pathways. IKKα/ß-mediated phosphorylation of RIPK1 in complex I was shown to maintain RIPK1 in a prosurvival modus. Consequently, conditions affecting proper IKKα/ß activation perturb IKKα/ß-phosphorylation of RIPK1 and switch the TNF response toward RIPK1 kinase-dependent cell death. Methods to study the posttranslational modifications of RIPK1 in complex I are therefore of great value. Here, we describe a detailed protocol to isolate complex I-associated RIPK1 from cells and provide different tools to study the phosphorylation status of RIPK1 in TNFR1 complex I.


Subject(s)
Embryo, Mammalian/pathology , Fibroblasts/pathology , Multiprotein Complexes/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Animals , Cell Death , Cells, Cultured , Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Mice , Phosphorylation , Signal Transduction
15.
Cell Death Dis ; 9(5): 494, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717117

ABSTRACT

The sensitivity of cells to death receptor-induced apoptosis is commonly controlled by multiple checkpoints in order to limit induction of excessive or unnecessary death. Although cytotoxic in various cancer cells, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) does not trigger apoptosis in most non-transformed cells. The molecular nature of the checkpoints that normally protect the cells from TRAIL-induced death are not fully understood. Endoplasmic reticulum (ER) stress has been reported to switch the sensitivity of human cells to the cytotoxic effect of TRAIL, suggesting that this cellular state perturbs some of these protective mechanisms. We found that tunicamycin (TU), but no other ER stress inducers, sensitized mouse fibroblasts and hippocampal neuronal cells to TRAIL-induced apoptosis. Importantly, the sensitization was specific to TRAIL and not caused by differences in ER stress induction. Instead, it relied on the inhibition of N-glycosylation of the mouse TRAIL receptor (mTRAIL-R). Inhibition of N-glycosylation did not alter cell surface expression of mTRAIL-R but enhanced its ability to bind TRAIL, and facilitated mTRAIL-R oligomerization, which resulted in enhanced death-inducing signaling complex (DISC) formation and caspase-8 activation. Remarkably, reconstitution of mTRAIL-R-deficient cells with a version of mTRAIL-R mutated for the three N-glycosylation sites identified in its ectodomain confirmed higher sensitivity to TRAIL-induced apoptosis. Together, our results demonstrate that inhibition of N-glycosylation of mTRAIL-R, and not ER stress induction, sensitizes mouse cells to TRAIL-induced apoptosis. We therefore reveal a new mechanism restraining TRAIL cytotoxicity in mouse cells.


Subject(s)
Apoptosis/drug effects , Fibroblasts/drug effects , Protein Processing, Post-Translational , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , 3T3 Cells , Animals , Fibroblasts/metabolism , Fibroblasts/pathology , Glycosylation , HEK293 Cells , HeLa Cells , Humans , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Signal Transduction
16.
Nat Cell Biol ; 19(10): 1237-1247, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28920952

ABSTRACT

TNF is a master proinflammatory cytokine whose pathogenic role in inflammatory disorders can, in certain conditions, be attributed to RIPK1 kinase-dependent cell death. Survival, however, is the default response of most cells to TNF stimulation, indicating that cell demise is normally actively repressed and that specific checkpoints must be turned off for cell death to proceed. We identified RIPK1 as a direct substrate of MK2 in the TNFR1 signalling pathway. Phosphorylation of RIPK1 by MK2 limits cytosolic activation of RIPK1 and the subsequent assembly of the death complex that drives RIPK1 kinase-dependent apoptosis and necroptosis. In line with these in vitro findings, MK2 inactivation greatly sensitizes mice to the cytotoxic effects of TNF in an acute model of sterile shock caused by RIPK1-dependent cell death. In conclusion, we identified MK2-mediated RIPK1 phosphorylation as an important molecular mechanism limiting the sensitivity of the cells to the cytotoxic effects of TNF.


Subject(s)
Apoptosis/drug effects , Fibroblasts/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Shock/chemically induced , Tumor Necrosis Factor-alpha/toxicity , Animals , Cell Line , Cytosol/enzymology , Disease Models, Animal , Enzyme Activation , Female , Fibroblasts/enzymology , Fibroblasts/pathology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Necrosis , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptors, Tumor Necrosis Factor, Type I/agonists , Receptors, Tumor Necrosis Factor, Type I/metabolism , Serine , Shock/enzymology , Shock/pathology , Shock/prevention & control , Signal Transduction/drug effects , Time Factors
17.
Trends Cell Biol ; 26(10): 721-732, 2016 10.
Article in English | MEDLINE | ID: mdl-27368376

ABSTRACT

Throughout the animal kingdom, innate immune receptors protect the organism from microbial intruders by activating pathways that mediate inflammation and pathogen clearance. Necroptosis contributes to the innate immune response by killing pathogen-infected cells and by alerting the immune system through the release of danger signals. Components of the necroptotic signaling axis - TIR-domain-containing adapter-inducing interferon-ß (TRIF), Z-DNA sensor DAI, receptor-interacting kinase (RIPK)1, RIPK3 and mixed-lineage kinase domain-like protein (MLKL) - are therefore expected to be found in all animals. However, a phylogenetic analysis reveals that the necroptotic axis, except for RIPK1, is poorly conserved in the animal kingdom, suggesting that alternative mechanisms regulate necroptosis in these species or that necroptosis would apparently be absent. These findings question the universal role of necroptosis during innate immunity in the animal kingdom.


Subject(s)
Apoptosis , Biological Evolution , Animals , Humans , Immunity, Innate , Inflammation/immunology , Inflammation/pathology , Necrosis , Phylogeny
18.
Nat Protoc ; 11(8): 1444-54, 2016 08.
Article in English | MEDLINE | ID: mdl-27414760

ABSTRACT

Several cell death assays have been developed based on a single biochemical parameter such as caspase activation or plasma membrane permeabilization. Our fluorescent apoptosis/necrosis (FAN) assay directly measures cell death and distinguishes between caspase-dependent apoptosis and caspase-independent necrosis of cells grown in any multiwell plate. Cell death is monitored in standard growth medium as an increase in fluorescence intensity of a cell-impermeable dye (SYTOX Green) after plasma membrane disintegration, whereas apoptosis is detected through caspase-mediated release of a fluorophore from its quencher (DEVD-amc). The assay determines the normalized percentage of dead cells and caspase activation per condition as an end-point measurement or in real time (automated). The protocol can be applied to screen drugs, proteins or siRNAs for interference with cell death while simultaneously detecting cell death modality switching between apoptosis and necrosis. Initial preparation may take up to 5 d, but the typical hands-on time is ∼2 h.


Subject(s)
Cell Death , Fluorometry/methods , Animals , Cell Line , Humans , Mice , Staining and Labeling , Time Factors
19.
Nat Cell Biol ; 18(3): 291-302, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26900751

ABSTRACT

Receptor-interacting protein kinase 3 (RIPK3) functions as a key regulator of necroptosis. Here, we report that the RIPK3 expression level is negatively regulated by CHIP (carboxyl terminus of Hsp70-interacting protein; also known as STUB1) E3 ligase-mediated ubiquitylation. Chip(-/-) mouse embryonic fibroblasts and CHIP-depleted L929 and HT-29 cells exhibited higher levels of RIPK3 expression, resulting in increased sensitivity to necroptosis induced by TNF (also known as TNFα). These phenomena are due to the CHIP-mediated ubiquitylation of RIPK3, which leads to its lysosomal degradation. Interestingly, RIPK1 expression is also negatively regulated by CHIP-mediated ubiquitylation, validating the major role of CHIP in necrosome formation and sensitivity to TNF-mediated necroptosis. Chip(-/-) mice (C57BL/6) exhibit inflammation in the thymus and massive cell death and disintegration in the small intestinal tract, and die within a few weeks after birth. These phenotypes are rescued by crossing with Ripk3(-/-) mice. These results imply that CHIP is a bona fide negative regulator of the RIPK1-RIPK3 necrosome formation leading to desensitization of TNF-mediated necroptosis.


Subject(s)
Lysosomes/metabolism , Necrosis/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/physiology , Animals , Apoptosis/physiology , Cell Line, Tumor , Humans , Inflammation/metabolism , Mice, Knockout
20.
Cell Rep ; 7(4): 971-81, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24813885

ABSTRACT

Although mixed lineage kinase domain-like (MLKL) protein has emerged as a specific and crucial protein for necroptosis induction, how MLKL transduces the death signal remains poorly understood. Here, we demonstrate that the full four-helical bundle domain (4HBD) in the N-terminal region of MLKL is required and sufficient to induce its oligomerization and trigger cell death. Moreover, we found that a patch of positively charged amino acids on the surface of the 4HBD binds to phosphatidylinositol phosphates (PIPs) and allows recruitment of MLKL to the plasma membrane. Importantly, we found that recombinant MLKL, but not a mutant lacking these positive charges, induces leakage of PIP-containing liposomes as potently as BAX, supporting a model in which MLKL induces necroptosis by directly permeabilizing the plasma membrane. Accordingly, we found that inhibiting the formation of PI(5)P and PI(4,5)P2 specifically inhibits tumor necrosis factor (TNF)-mediated necroptosis but not apoptosis.


Subject(s)
Phosphatidylinositol Phosphates/metabolism , Protein Kinases/metabolism , Cell Death/drug effects , Cell Death/physiology , Cell Line , Cell Membrane/enzymology , Cell Membrane/metabolism , HEK293 Cells , Humans , Liposomes/metabolism , Necrosis , Phosphorylation , Protein Kinases/pharmacology , Recombinant Proteins/pharmacology , Signal Transduction , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL