Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.008
Filter
Add more filters

Publication year range
1.
Cell ; 186(14): 2959-2976.e22, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37339633

ABSTRACT

Snakes are a remarkable squamate lineage with unique morphological adaptations, especially those related to the evolution of vertebrate skeletons, organs, and sensory systems. To clarify the genetic underpinnings of snake phenotypes, we assembled and analyzed 14 de novo genomes from 12 snake families. We also investigated the genetic basis of the morphological characteristics of snakes using functional experiments. We identified genes, regulatory elements, and structural variations that have potentially contributed to the evolution of limb loss, an elongated body plan, asymmetrical lungs, sensory systems, and digestive adaptations in snakes. We identified some of the genes and regulatory elements that might have shaped the evolution of vision, the skeletal system and diet in blind snakes, and thermoreception in infrared-sensitive snakes. Our study provides insights into the evolution and development of snakes and vertebrates.


Subject(s)
Genome , Snakes , Animals , Snakes/genetics , Adaptation, Physiological , Acclimatization , Evolution, Molecular , Phylogeny , Biological Evolution
3.
Proc Natl Acad Sci U S A ; 121(5): e2316834121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38252823

ABSTRACT

CRISPR-Cas-based genome editing is widely used in bacteria at scales ranging from construction of individual mutants to massively parallel libraries. This procedure relies on guide RNA-directed cleavage of the genome followed by repair with a template that introduces a desired mutation along with synonymous "immunizing" mutations to prevent re-cleavage of the genome after editing. Because the immunizing mutations do not change the protein sequence, they are often assumed to be neutral. However, synonymous mutations can change mRNA structures in ways that alter levels of the encoded proteins. We have tested the assumption that immunizing mutations are neutral by constructing a library of over 50,000 edits that consist of only synonymous mutations in Escherichia coli. Thousands of edits had substantial effects on fitness during growth of E. coli on acetate, a poor carbon source that is toxic at high concentrations. The percentage of high-impact edits varied considerably between genes and at different positions within genes. We reconstructed clones with high-impact edits and found that 69% indeed had significant effects on growth in acetate. Interestingly, fewer edits affected fitness during growth in glucose, a preferred carbon source, suggesting that changes in protein expression caused by synonymous mutations may be most important when an organism encounters challenging conditions. Finally, we showed that synonymous edits can have widespread effects; a synonymous edit at the 5' end of ptsI altered expression of hundreds of genes. Our results suggest that the synonymous immunizing edits introduced during CRISPR-Cas-based genome editing should not be assumed to be innocuous.


Subject(s)
Escherichia coli , RNA, Guide, CRISPR-Cas Systems , Escherichia coli/genetics , Gene Library , Carbon , Acetates
4.
Proc Natl Acad Sci U S A ; 121(11): e2313123121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38437546

ABSTRACT

Organized flaking techniques to obtain predetermined stone tools have been traced back to the early Acheulean (also known as mode 2) in Africa and are seen as indicative of the emergence of advanced technical abilities and in-depth planning skills among early humans. Here, we report one of the earliest known examples of prepared core technology in the archaeological record, at the Cenjiawan (CJW) site in the Nihewan basin of China, dated 1.1 Mya. The operational schemes reconstructed from the CJW refit sets, together with shaping patterns observed in the retouched tools, suggest that Nihewan basin toolmakers had the technical abilities of mode 2 hominins, and developed different survival strategies to adapt to local raw materials and environments. This finding predates the previously earliest known prepared core technology from Eurasia by 0.3 My, and the earliest known mode 2 sites in East Asia by a similar amount of time, thus suggesting that hominins with advanced technologies may have migrated into high latitude East Asia as early as 1.1 Mya.


Subject(s)
Hominidae , Technology , Humans , Animals , Asia, Eastern , China , Africa
5.
Mol Biol Evol ; 41(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38175672

ABSTRACT

Although previous studies have identified human-specific accelerated regions as playing a key role in the recent evolution of the human brain, the characteristics and cellular functions of rapidly evolving conserved elements (RECEs) in ancestral primate lineages remain largely unexplored. Here, based on large-scale primate genome assemblies, we identify 888 RECEs that have been highly conserved in primates that exhibit significantly accelerated substitution rates in the ancestor of the Simiiformes. This primate lineage exhibits remarkable morphological innovations, including an expanded brain mass. Integrative multiomic analyses reveal that RECEs harbor sequences with potential cis-regulatory functions that are activated in the adult human brain. Importantly, genes linked to RECEs exhibit pronounced expression trajectories in the adult brain relative to the fetal stage. Furthermore, we observed an increase in the chromatin accessibility of RECEs in oligodendrocytes from individuals with Alzheimer's disease (AD) compared to that of a control group, indicating that these RECEs may contribute to brain aging and AD. Our findings serve to expand our knowledge of the genetic underpinnings of brain function during primate evolution.


Subject(s)
Alzheimer Disease , Animals , Humans , Alzheimer Disease/genetics , Evolution, Molecular , Primates/genetics , Brain
6.
Eur J Immunol ; 54(1): e2350458, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37830252

ABSTRACT

Significant advances have been made in the field of intravital microscopy (IVM) on myeloid cells due to the growing number of validated fluorescent probes and reporter mice. IVM provides a visualization platform to directly observe cell behavior and deepen our understanding of cellular dynamics, heterogeneity, plasticity, and cell-cell communication in native tissue environments. This review outlines the current studies on the dynamic interaction and function of innate immune cells with a focus on those that are studied with IVM and covers the advances in data analysis with emerging artificial intelligence-based algorithms. Finally, the prospects of IVM on innate immune cells are discussed.


Subject(s)
Artificial Intelligence , Intravital Microscopy , Animals , Mice , Cell Communication , Immunity, Innate
7.
PLoS Pathog ; 19(4): e1011222, 2023 04.
Article in English | MEDLINE | ID: mdl-37014912

ABSTRACT

Endogenous retroviruses (ERVs) are the relics of ancient retroviruses occupying a substantial fraction of vertebrate genomes. However, knowledge about the functional association of ERVs with cellular activities remains limited. Recently, we have identified approximately 3,315 ERVs from zebrafish at genome-wide level, among which 421 ERVs were actively expressed in response to the infection of Spring viraemia of carp virus (SVCV). These findings demonstrated the previously unrecognized activity of ERVs in zebrafish immunity, thereby making zebrafish an attractive model organism for deciphering the interplay among ERVs, exogenous invading viruses, and host immunity. In the present study, we investigated the functional role of an envelope protein (Env38) derived from an ERV-E5.1.38-DanRer element in zebrafish adaptive immunity against SVCV in view of its strong responsiveness to SVCV infection. This Env38 is a glycosylated membrane protein mainly distributed on MHC-II+ antigen-presenting cells (APCs). By performing blockade and knockdown/knockout assays, we found that the deficiency of Env38 markedly impaired the activation of SVCV-induced CD4+ T cells and thereby led to the inhibition of IgM+/IgZ+ B cell proliferation, IgM/IgZ Ab production, and zebrafish defense against SVCV challenge. Mechanistically, Env38 activates CD4+ T cells by promoting the formation of pMHC-TCR-CD4 complex via cross-linking MHC-II and CD4 molecules between APCs and CD4+ T cells, wherein the surface subunit (SU) of Env38 associates with the second immunoglobin domain of CD4 (CD4-D2) and the first α1 domain of MHC-IIα (MHC-IIα1). Notably, the expression and functionality of Env38 was strongly induced by zebrafish IFNφ1, indicating that env38 acts as an IFN-stimulating gene (ISG) regulated by IFN signaling. To the best of our knowledge, this study is the first to identify the involvement of an Env protein in host immune defense against an exogenous invading virus by promoting the initial activation of adaptive humoral immunity. It improved the current understanding of the cooperation between ERVs and host adaptive immunity.


Subject(s)
Endogenous Retroviruses , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Zebrafish , Immunity, Humoral , Immunoglobulin M , Fish Diseases/genetics
8.
Mol Psychiatry ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273106

ABSTRACT

Emerging evidence suggests that the gut microbiota is closely related to psychiatric disorders. However, little is known about the role of the gut microbiota in the development of obsessive-compulsive disorder (OCD). Here, to investigate the contribution of gut microbiota to the pathogenesis of OCD, we transplanted fecal microbiota from first-episode, drug-naive OCD patients or demographically matched healthy individuals into antibiotic-treated specific pathogen-free (SPF) mice and showed that colonization with OCD microbiota is sufficient to induce core behavioral deficits, including abnormal anxiety-like and compulsive-like behaviors. The fecal microbiota was analyzed using 16 S rRNA full-length sequencing, and the results demonstrated a clear separation of the fecal microbiota of mice colonized with OCD and control microbiota. Notably, microbiota from OCD-colonized mice resulted in injured neuronal morphology and function in the mPFC, with inflammation in the mPFC and colon. Unbiased metabolomic analyses of the serum and mPFC region revealed the accumulation of succinic acid (SA) in OCD-colonized mice. SA impeded neuronal activity and induced an inflammatory response in both the colon and mPFC, impacting intestinal permeability and brain function, which act as vital signal mediators in gut microbiota-brain-immune crosstalk. Manipulations of dimethyl malonate (DM) have been reported to exert neuroprotective effects by suppressing the oxidation of accumulated succinic acid, attenuating the downstream inflammatory response and neuronal damage, and can help to partly improve abnormal behavior and reduce neuroinflammation and intestinal inflammation in OCD-colonized mice. We propose that the gut microbiota likely regulates brain function and behaviors in mice via succinic acid signaling, which contributes to the pathophysiology of OCD through gut-brain crosstalk and may provide new insights into the treatment of this disorder.

9.
J Immunol ; 211(5): 816-835, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37486225

ABSTRACT

Programmed death-ligand 1/programmed cell death 1 (PD-L1/PD-1) is one of the most important immune checkpoints in humans and other mammalian species. However, the occurrence of the PD-L1/PD-1 checkpoint in evolutionarily ancient vertebrates remains elusive because of the absence of a PD-1 homolog before its appearance in tetrapods. In this article, we identified, to our knowledge, a novel PD-L1/B and T lymphocyte attenuator (BTLA) checkpoint in zebrafish by using an Edwardsiella tarda-induced bacterial infection model. Results showed that zebrafish (Danio rerio) PD-L1 (DrPD-L1) and BTLA (DrBTLA) were differentially upregulated on MHC class II+ macrophages (Mϕs) and CD8+ T cells in response to E. tarda infection. DrPD-L1 has a strong ability to interact with DrBTLA, as shown by the high affinity (KD = 5.68 nM) between DrPD-L1/DrBTLA proteins. Functionally, the breakdown of DrPD-L1/DrBTLA interaction significantly increased the cytotoxicity of CD8+BTLA+ T cells to E. tarda-infected PD-L1+ Mϕ cells and reduced the immune escape of E. tarda from the target Mϕ cells, thereby enhancing the antibacterial immunity of zebrafish against E. tarda infection. Similarly, the engagement of DrPD-L1 by soluble DrBTLA protein diminished the tolerization of CD8+ T cells to E. tarda infection. By contrast, DrBTLA engagement by a soluble DrPD-L1 protein drives aberrant CD8+ T cell responses. These results were finally corroborated in a DrPD-L1-deficient (PD-L1-/-) zebrafish model. This study highlighted a primordial PD-L1/BTLA coinhibitory axis that regulates CD8+ T cell activation in teleost fish and may act as an alternative to the PD-L1/PD-1 axis in mammals. It also revealed a previously unrecognized strategy for E. tarda immune evasion by inducing CD8+ T cell tolerance to target Mϕ cells through eliciting the PD-L1/BTLA checkpoint pathway.


Subject(s)
B7-H1 Antigen , Zebrafish , Humans , Animals , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes , Mammals , Receptors, Immunologic/metabolism
10.
Proc Natl Acad Sci U S A ; 119(40): e2123030119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161902

ABSTRACT

Lorises are a group of globally threatened strepsirrhine primates that exhibit many unusual physiological and behavioral features, including a low metabolic rate, slow movement, and hibernation. Here, we assembled a chromosome-level genome sequence of the pygmy loris (Xanthonycticebus pygmaeus) and resequenced whole genomes from 50 pygmy lorises and 6 Bengal slow lorises (Nycticebus bengalensis). We found that many gene families involved in detoxification have been specifically expanded in the pygmy loris, including the GSTA gene family, with many newly derived copies functioning specifically in the liver. We detected many genes displaying evolutionary convergence between pygmy loris and koala, including PITRM1. Significant decreases in PITRM1 enzymatic activity in these two species may have contributed to their characteristic low rate of metabolism. We also detected many evolutionarily convergent genes and positively selected genes in the pygmy loris that are involved in muscle development. Functional assays demonstrated the decreased ability of one positively selected gene, MYOF, to up-regulate the fast-type muscle fiber, consistent with the lower proportion of fast-twitch muscle fibers in the pygmy loris. The protein product of another positively selected gene in the pygmy loris, PER2, exhibited weaker binding to the key circadian core protein CRY, a finding that may be related to this species' unusual circadian rhythm. Finally, population genomics analysis revealed that these two extant loris species, which coexist in the same habitat, have exhibited an inverse relationship in terms of their demography over the past 1 million years, implying strong interspecies competition after speciation.


Subject(s)
Adaptation, Biological , Biological Evolution , Lorisidae , Adaptation, Biological/genetics , Animals , Demography , Hibernation , Lorisidae/genetics , Metagenomics , Metalloendopeptidases/genetics
11.
Proc Natl Acad Sci U S A ; 119(15): e2120787119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35385357

ABSTRACT

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1­G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1­G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7­G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9­G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Transcriptome , Child , Humans , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics
12.
BMC Genomics ; 25(1): 428, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689225

ABSTRACT

BACKGROUND: Although many studies have been done to reveal artificial selection signatures in commercial and indigenous chickens, a limited number of genes have been linked to specific traits. To identify more trait-related artificial selection signatures and genes, we re-sequenced a total of 85 individuals of five indigenous chicken breeds with distinct traits from Yunnan Province, China. RESULTS: We found 30 million non-redundant single nucleotide variants and small indels (< 50 bp) in the indigenous chickens, of which 10 million were not seen in 60 broilers, 56 layers and 35 red jungle fowls (RJFs) that we compared with. The variants in each breed are enriched in non-coding regions, while those in coding regions are largely tolerant, suggesting that most variants might affect cis-regulatory sequences. Based on 27 million bi-allelic single nucleotide polymorphisms identified in the chickens, we found numerous selective sweeps and affected genes in each indigenous chicken breed and substantially larger numbers of selective sweeps and affected genes in the broilers and layers than previously reported using a rigorous statistical model. Consistent with the locations of the variants, the vast majority (~ 98.3%) of the identified selective sweeps overlap known quantitative trait loci (QTLs). Meanwhile, 74.2% known QTLs overlap our identified selective sweeps. We confirmed most of previously identified trait-related genes and identified many novel ones, some of which might be related to body size and high egg production traits. Using RT-qPCR, we validated differential expression of eight genes (GHR, GHRHR, IGF2BP1, OVALX, ELF2, MGARP, NOCT, SLC25A15) that might be related to body size and high egg production traits in relevant tissues of relevant breeds. CONCLUSION: We identify 30 million single nucleotide variants and small indels in the five indigenous chicken breeds, 10 million of which are novel. We predict substantially more selective sweeps and affected genes than previously reported in both indigenous and commercial breeds. These variants and affected genes are good candidates for further experimental investigations of genotype-phenotype relationships and practical applications in chicken breeding programs.


Subject(s)
Chickens , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Selection, Genetic , Animals , Chickens/genetics , Genome , INDEL Mutation , Breeding , Phenotype , Genomics/methods
13.
BMC Genomics ; 25(1): 430, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693501

ABSTRACT

BACKGROUND: Although multiple chicken genomes have been assembled and annotated, the numbers of protein-coding genes in chicken genomes and their variation among breeds are still uncertain due to the low quality of these genome assemblies and limited resources used in their gene annotations. To fill these gaps, we recently assembled genomes of four indigenous chicken breeds with distinct traits at chromosome-level. In this study, we annotated genes in each of these assembled genomes using a combination of RNA-seq- and homology-based approaches. RESULTS: We identified varying numbers (17,497-17,718) of protein-coding genes in the four indigenous chicken genomes, while recovering 51 of the 274 "missing" genes in birds in general, and 36 of the 174 "missing" genes in chickens in particular. Intriguingly, based on deeply sequenced RNA-seq data collected in multiple tissues in the four breeds, we found 571 ~ 627 protein-coding genes in each genome, which were missing in the annotations of the reference chicken genomes (GRCg6a and GRCg7b/w). After removing redundancy, we ended up with a total of 1,420 newly annotated genes (NAGs). The NAGs tend to be found in subtelomeric regions of macro-chromosomes (chr1 to chr5, plus chrZ) and middle chromosomes (chr6 to chr13, plus chrW), as well as in micro-chromosomes (chr14 to chr39) and unplaced contigs, where G/C contents are high. Moreover, the NAGs have elevated quadruplexes G frequencies, while both G/C contents and quadruplexes G frequencies in their surrounding regions are also high. The NAGs showed tissue-specific expression, and we were able to verify 39 (92.9%) of 42 randomly selected ones in various tissues of the four chicken breeds using RT-qPCR experiments. Most of the NAGs were also encoded in the reference chicken genomes, thus, these genomes might harbor more genes than previously thought. CONCLUSION: The NAGs are widely distributed in wild, indigenous and commercial chickens, and they might play critical roles in chicken physiology. Counting these new genes, chicken genomes harbor more genes than originally thought.


Subject(s)
Chickens , Genome , Molecular Sequence Annotation , Animals , Chickens/genetics , Base Composition , Telomere/genetics , Chromosomes/genetics , Genomics/methods
14.
J Am Chem Soc ; 146(19): 12969-12975, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38625041

ABSTRACT

Separation of methanol/benzene azeotrope mixtures is very challenging not only by the conventional distillation technique but also by adsorbents. In this work, we design and synthesize a flexible Ca-based metal-organic framework MAF-58 consisting of cheap raw materials. MAF-58 shows selective methanol-induced pore-opening flexibility. Although the opened pores are large enough to accommodate benzene molecules, MAF-58 shows methanol/benzene molecular sieving with ultrahigh experimental selectivity, giving 5.1 mmol g-1 high-purity (99.99%+) methanol and 2.0 mmol g-1 high-purity (99.97%+) benzene in a single adsorption/desorption cycle. Computational simulations reveal that the preferentially adsorbed, coordinated methanol molecules act as the gating component to selectively block the diffusion of benzene, offering a new gating adsorption mechanism.

15.
Mol Biol Evol ; 40(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37494289

ABSTRACT

Although the continual expansion of the brain during primate evolution accounts for our enhanced cognitive capabilities, the drivers of brain evolution have scarcely been explored in these ancestral nodes. Here, we performed large-scale comparative genomic, transcriptomic, and epigenomic analyses to investigate the evolutionary alterations acquired by brain genes and provide comprehensive listings of innovatory genetic elements along the evolutionary path from ancestral primates to human. The regulatory sequences associated with brain-expressed genes experienced rapid change, particularly in the ancestor of the Simiiformes. Extensive comparisons of single-cell and bulk transcriptomic data between primate and nonprimate brains revealed that these regulatory sequences may drive the high expression of certain genes in primate brains. Employing in utero electroporation into mouse embryonic cortex, we show that the primate-specific brain-biased gene BMP7 was recruited, probably in the ancestor of the Simiiformes, to regulate neuronal proliferation in the primate ventricular zone. Our study provides a comprehensive listing of genes and regulatory changes along the brain evolution lineage of ancestral primates leading to human. These data should be invaluable for future functional studies that will deepen our understanding not only of the genetic basis of human brain evolution but also of inherited disease.


Subject(s)
Brain , Primates , Mice , Humans , Animals , Primates/genetics , Brain/metabolism , Evolution, Molecular
16.
Mol Biol Evol ; 40(1)2023 01 04.
Article in English | MEDLINE | ID: mdl-36625089

ABSTRACT

Determining the functional consequences of karyotypic changes is invariably challenging because evolution tends to obscure many of its own footprints, such as accumulated mutations, recombination events, and demographic perturbations. Here, we describe the assembly of a chromosome-level reference genome of the gayal (Bos frontalis) thereby revealing the structure, at base-pair-level resolution, of a telo/acrocentric-to-telo/acrocentric Robertsonian translocation (2;28) (T/A-to-T/A rob[2;28]). The absence of any reduction in the recombination rate or genetic introgression within the fusion region of gayal served to challenge the long-standing view of a role for fusion-induced meiotic dysfunction in speciation. The disproportionate increase noted in the distant interactions across pro-chr2 and pro-chr28, and the change in open-chromatin accessibility following rob(2;28), may, however, have led to the various gene expression irregularities observed in the gayal. Indeed, we found that many muscle-related genes, located synthetically on pro-chr2 and pro-chr28, exhibited significant changes in expression. This, combined with genome-scale structural variants and expression alterations in genes involved in myofibril composition, may have driven the rapid sarcomere adaptation of gayal to its rugged mountain habitat. Our findings not only suggest that large-scale chromosomal changes can lead to alterations in genome-level expression, thereby promoting both adaptation and speciation, but also illuminate novel avenues for studying the relationship between karyotype evolution and speciation.


Subject(s)
Chromatin , Genome , Animals , Cattle
17.
Mol Biol Evol ; 40(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37134013

ABSTRACT

HIV-1 is a highly host-specific retrovirus that infects humans but not most nonhuman primates. Thus, the lack of a suitable primate model that can be directly infected with HIV-1 hinders HIV-1/AIDS research. In the previous study, we have found that the northern pig-tailed macaques (NPMs) are susceptible to HIV-1 infection but show a nonpathogenic state. In this study, to understand this macaque-HIV-1 interaction, we assembled a de novo genome and longitudinal transcriptome for this species during the course of HIV-1 infection. Using comparative genomic analysis, a positively selected gene, Toll-like receptor 8, was identified with a weak ability to induce an inflammatory response in this macaque. In addition, an interferon-stimulated gene, interferon alpha inducible protein 27, was upregulated in acute HIV-1 infection and acquired an enhanced ability to inhibit HIV-1 replication compared with its human ortholog. These findings coincide with the observation of persistently downregulated immune activation and low viral replication and can partially explain the AIDS-free state in this macaque following HIV-1 infection. This study identified a number of unexplored host genes that may hamper HIV-1 replication and pathogenicity in NPMs and provided new insights into the host defense mechanisms in cross-species infection of HIV-1. This work will facilitate the adoption of NPM as a feasible animal model for HIV-1/AIDS research.


Subject(s)
HIV Infections , HIV-1 , Simian Immunodeficiency Virus , Animals , Humans , Macaca nemestrina , HIV-1/genetics , Genomics , Simian Immunodeficiency Virus/genetics
18.
Oncologist ; 29(1): e15-e24, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37279780

ABSTRACT

BACKGROUND: Neoadjuvant trastuzumab/pertuzumab (HP) plus chemotherapy for HER2-positive breast cancer (BC) achieved promising efficacy. The additional cardiotoxicity still existed. Brecan study evaluated the efficacy and safety of neoadjuvant pegylated liposomal doxorubicin (PLD)/cyclophosphamide and sequential nab-paclitaxel based on HP (PLD/C/HP-nabP/HP). PATIENTS AND METHODS: Brecan was a single-arm phase II study. Eligible patients with stages IIA-IIIC HER2-positive BC received 4 cycles of PLD, cyclophosphamide, and HP, followed by 4 cycles of nab-paclitaxel and HP. Definitive surgery was scheduled after 21 days for patients completing treatment or experiencing intolerable toxicity. The primary endpoint was the pathological complete response (pCR). RESULTS: Between January 2020 and December 2021, 96 patients were enrolled. Ninety-five (99.0%) patients received 8 cycles of neoadjuvant therapy and all underwent surgery with 45 (46.9%) breast-conserving surgery and 51 (53.1%) mastectomy. The pCR was 80.2% (95%CI, 71.2%-87.0%). Four (4.2%) experienced left ventricular insufficiency with an absolute decline in LVEF (43%-49%). No congestive heart failure and ≥grade 3 cardiac toxicity occurred. The objective response rate was 85.4% (95%CI, 77.0%-91.1%), including 57 (59.4%) complete responses and 25 (26.0%) partial responses. The disease control rate was 99.0% (95%CI, 94.3%-99.8%). For overall safety, ≥grade 3 AEs occurred in 30 (31.3%) and mainly included neutropenia (30.2%) and asthenia (8.3%). No treatment-related deaths occurred. Notably, age of >30 (P = .01; OR = 5.086; 95%CI, 1.44-17.965) and HER2 IHC 3+ (P = .02; OR = 4.398; 95%CI, 1.286-15.002) were independent predictors for superior pCR (ClinicalTrials.gov Identifier NCT05346107). CONCLUSION: Brecan study demonstrated the encouraging safety and efficacy of neoadjuvant PLD/C/HP-nabP/HP, suggesting a potential therapeutic option in HER2-positive BC.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Neoadjuvant Therapy/adverse effects , Receptor, ErbB-2/therapeutic use , Mastectomy , Treatment Outcome , Paclitaxel , Cyclophosphamide/therapeutic use , Trastuzumab/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects
19.
Cancer Immunol Immunother ; 73(3): 58, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386050

ABSTRACT

B cells possess anti-tumor functions mediated by granzyme B, in addition to their role in antigen presentation and antibody production. However, the variations in granzyme B+ B cells between tumor and non-tumor tissues have been largely unexplored. Therefore, we integrated 25 samples from the Gene Expression Omnibus database and analyzed the tumor immune microenvironment. The findings uncovered significant inter- and intra-tumoral heterogeneity. Notably, single-cell data showed higher proportions of granzyme B+ B cells in tumor samples compared to control samples, and these levels were positively associated with disease-free survival. The elevated levels of granzyme B+ B cells in tumor samples resulted from tumor cell chemotaxis through the MIF- (CD74 + CXCR4) signaling pathway. Furthermore, the anti-tumor function of granzyme B+ B cells in tumor samples was adversely affected, potentially providing an explanation for tumor progression. These findings regarding granzyme B+ B cells were further validated in an independent clinic cohort of 40 liver transplant recipients with intrahepatic cholangiocarcinoma. Our study unveils an interaction between granzyme B+ B cells and intrahepatic cholangiocarcinoma, opening up potential avenues for the development of novel therapeutic strategies against this disease.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Liver Transplantation , Humans , Granzymes/genetics , Cholangiocarcinoma/genetics , Cholangiocarcinoma/surgery , Prognosis , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/surgery , Bile Ducts, Intrahepatic , Tumor Microenvironment
20.
Small ; 20(16): e2309076, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38032168

ABSTRACT

Bismuth(III)-based complexes have garnered increasing attention in fluorescence sensing due to their environmentally friendly and sustainable characteristics. A Bismuth(III) coordination polymer (CP),1-Cl based on a naphthalene diimides(NDI)-pyridinium is synthesized by an in situ reaction method. Notable for its sensitivity to visible light, 1-Cl shows excellent photochromic properties, and the integration of NDI and pyridinium in one ligand makes photogenerated radicals more stable. Structural analysis and theoretical calculations are employed to investigate the potential pathway of photoinduced electron transfer (ET) during the photochromic process. Notably, in aqueous solutions, 1-Cl displays an extraordinary fluorescence enhancement response to bromide ion (Br-), resulting in a distinct transition from yellow to orange in color. The potential mechanism of fluorescence sensing has been revealed through single-crystal X-ray diffraction analysis. This insight highlights a continuous substitution process where the Cl- ions are successively replaced by Br- ions. Consequently, a single-crystal-to-single-crystal transformation (SCSC) occurs, yielding the intermediate species, 1-Cl-Br, which ultimately transforms into the final product, 1-Br. Finally, the photochromic film is successfully prepared and applied to practical applications such as ink-free printing, information anti-counterfeiting, and the visual detection of Br- ions. This work combines photochromism with fluorescence sensing, broadening the research field and practical application of photochromic materials.

SELECTION OF CITATIONS
SEARCH DETAIL