Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Huan Jing Ke Xue ; 36(10): 3554-65, 2015 Oct.
Article in Zh | MEDLINE | ID: mdl-26841585

ABSTRACT

Simultaneously on-line measurements of major water-soluble inorganic ions and gaseous pollutants were performed from June 9 to July 11, 2014 at Quzhou, an agriculture site in the North China Plain using a gas-aerosol collector (GAC) and ion chromatograph (IC), aiming to track the diurnal variation rule of secondary inorganic components and gas-phase precursors as well as their interactions. The transformation mechanism and sources of fine particles (PM2.5) were also discussed. The results showed that these water-soluble ions in PM2.5 and their gas-phase precursors varied regularly. As the dominant ionic components of PM2.5 (accounting for 76.23%), the average concentrations of SO4(2-), NH4(+), NO3(-) were 26.28 µg x m(-3), 18.08 µg x m(-3) and 16.36 µg m(-3) respectively. Among the precursor gases, the NH3, generated from the discharges of local agricultural activities, displayed a significantly higher concentration at an average value of 44.85 µg x m(-3). The average fine sulfate and nitrate oxidation ratios (SOR and NOR) were SOR = 0.60, NOR = 0.30, revealing the remarkable characteristics of secondary pollution. As could be found from the relevant analysis, the NH4(+) of Quzhou showed well relations with NO3(-) and SO4(2-), and the environment here was rich of ammonia. The NH4(+) existed in the form of (NH4)2SO4 and the generation of NO3(-) was limited by the HNO3. From the analysis for the equilibrium of NH4NO3, we observed that the atmospheric environment of Quzhou was adverse to the generation and maintenance of NH4NO3 during the daytime,in contrast with the night. Integrated with the study, the results displayed that the secondary transformation was the main source of fine particles in Quzhou, and the NH3 from field and compost was the significant factor leading to the high value of S-N-A.


Subject(s)
Agriculture , Air Pollutants/analysis , Environmental Monitoring , Particulate Matter/analysis , Ammonia/analysis , China , Gases/analysis , Nitrates/analysis , Particle Size , Seasons , Sulfates/analysis
2.
Huan Jing Ke Xue ; 33(9): 2946-52, 2012 Sep.
Article in Zh | MEDLINE | ID: mdl-23243843

ABSTRACT

Aerosol samples were collected in Beijing (BD) and Atlanta (GT) from July to August in 2011 using a Micro-Orifice Uniform Deposit Impactor (MOUDI) (0.18-18 microm, eight-stage) for organic carbon (OC) and elemental carbon (EC) measurement (Sunset Laboratory Inc, USA). The laser intensity of blank filters decreased with temperature in the process of OC & EC analysis because the structure of quartz filters was changed when burned which largely affected the determination of low concentration samples' splits. It would increase the accuracy of OC & EC split to determine it manually after the change of blank filter's laser intensity was recouped. The concentrations and size distributions of OC & EC using the improved method were different from taking the moment when oxygen was introduced as the split. The split may appear before oxygen addition, when the sample was rich in metal or substances that can be decomposed after heated. The concentrations of carbonaceous components were higher at BD than those at GT. The size distributions of OC showed a bimodal pattern with peaks appeared in the particles with size of (0.56-1.0) microm and (3.2-5.6) microm. The peak concentrations of OC were (2.82 +/- 1.59) microg x m(-3) and (1.95 +/- 0.76) microg x m(-3) at BD, and (1.28 +/- 0.41) microg x m(-3) and (0.64 +/- 0.19) microg x m(-3) at GT. EC showed a bimodal pattern at BD with peaks in particles with size of (0.56-1.0) microm and (3.2-5.6) microm, while showed a trimodal pattern at GT. The peak concentrations at BD were (0.32 +/- 0.24) microg x m(-3) and (0.26 +/- 0.19) microg x m(-3). EC at GT was preferably enriched in particles with size of (0.18-0.56) microm, the mass concentrations of EC in this size accounted for 44.6%. The OC and EC were more concentrated in accumulation mode at GT than those at BD, the reason may be that the main pollution source of GT is motor vehicle emission, while there are more industrial gas emissions at BD.


Subject(s)
Aerosols/chemistry , Air Pollutants/analysis , Carbon/analysis , Environmental Monitoring/methods , Organic Chemicals/analysis , China , Particle Size , Particulate Matter/chemistry , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL