Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Am Chem Soc ; 146(13): 9335-9346, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38501695

ABSTRACT

Controlling product selectivity in successive reactions of the same type is challenging owing to the comparable thermodynamic and kinetic properties of the reactions involved. Here, the synergistic interaction of the two phosphoryl groups in bisphosphine dioxides (BPDOs) with a bromo-phosphonium cation was studied experimentally to provide a practical tool for substrate-catalyst recognition. As the eventual result, we have developed a phosphonium-catalyzed monoreduction of chiral BPDOs to access an array of synthetically useful bisphosphine monoxides (BPMOs) with axial, spiro, and planar chirality, which are otherwise challenging to synthesize before. The reaction features excellent selectivity and impressive reactivity. It proceeds under mild conditions, avoiding the use of superstoichiometric amounts of additives and metal catalysts to simplify the synthetic procedure. The accessibility and scalability of the reaction allowed for the rapid construction of a ligand library for optimization of asymmetric Heck-type cyclization, laying the foundation for a broad range of applications of chiral BPMOs in catalysis.

2.
Chemistry ; 30(33): e202400995, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38600034

ABSTRACT

Introduction of the trifluoromethyl (CF3) group into organic compounds has garnered substantial interest because of its significant role in pharmaceuticals and agrochemicals. Here, we report a hydroxylamine-mediated radical process for C(sp2)-H trifluoromethylation of terminal alkenes. The reaction shows good reactivity, impressive E/Z selectivity (up to >20 : 1), and broad functional group compatibility. Expansion of this approach to perfluoroalkylation and late-stage trifluoromethylation of bioactive molecules demonstrates its promising application potential. Mechanistic studies suggest that the reaction follows a radical addition and subsequent elimination pathway.

3.
J Org Chem ; 86(21): 15326-15334, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34633802

ABSTRACT

Herein, we have reported a nickel-catalyzed cascade reductive thiolation of aryl halides with sulfinates driven by paired electrolysis. This protocol uses sulfinates as the sulfur source, and various thioethers could be synthesized under mild conditions. By mechanism exploration, we find that a cascade chemical step is allowed on the electrode interface and could alter the reaction pathway in paired electrolysis, whose findings could help the discovery of novel cascade reactions with unique reactivity.

SELECTION OF CITATIONS
SEARCH DETAIL