ABSTRACT
The processes affecting photochemical reactions and regional transport of ozone and its precursors in ambient air are very complicated. In this study, statistical analysis of the spatial and temporal distributions of ozone pollution in Zhoushan was carried out based on monitoring data from state monitoring stations in Zhoushan in 2014. Specifically, ozone formation was simulated by CMAQ (the community multiscale air quality) model, and the source contribution rate was calculated using the Integrated Source Apportionment Method (ISAM) source tracking algorithm. The results showed that ozone pollution was more severe in spring and autumn than in summer and winter, and the highest ozone concentrations mostly appeared during 13:00-15:00 in the afternoon. Putuo Station had the highest ozone concentration while Lincheng Station, located in the downtown area of the city, had the lowest ozone concentration. The overall average ozone concentration was not high; however, peak concentrations that exceeded the standards usually occurred, which occurs most often in May. Local ozone formation in Zhoushan City is controlled by the VOC concentration, and source tracking results showed that non-local sources accounted for 69.46% of the total contribution. Among local emission sources, fuel burning boiler sources, industry process sources, on-road mobile sources, and non-road mobile sources made similar contributions to ozone formation. Moreover, they showed significant characteristics of a port city. The contribution rates from shipping sources, petrochemical sources, and storage and transportation sources were 4.45%, 1.01%, and 1.80%, respectively. In conclusion, control of the ozone pollution in Zhoushan City should be based on simultaneous reduction and coordinated prevention involving multiple sources (VOCs as the main one) both locally and in surrounding areas.