Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.691
Filter
Add more filters

Publication year range
1.
Immunity ; 56(1): 180-192.e11, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36563676

ABSTRACT

The reinvigoration of anti-tumor T cells in response to immune checkpoint blockade (ICB) therapy is well established. Whether and how ICB therapy manipulates antibody-mediated immune response in cancer environments, however, remains elusive. Using tandem mass spectrometric analysis of modification of immunoglobulin G (IgG) from hepatoma tissues, we identified a role of ICB therapy in catalyzing IgG sialylation in the Fc region. Effector T cells triggered sialylation of IgG via an interferon (IFN)-γ-ST6Gal-I-dependent pathway. DC-SIGN+ macrophages represented the main target cells of sialylated IgG. Upon interacting with sialylated IgG, DC-SIGN stimulated Raf-1-elicited elevation of ATF3, which inactivated cGAS-STING pathway and eliminated subsequent type-I-IFN-triggered antitumorigenic immunity. Although enhanced IgG sialylation in tumors predicted improved therapeutic outcomes for patients receiving ICB therapy, impeding IgG sialylation augmented antitumorigenic T cell immunity after ICB therapy. Thus, targeting antibody-based negative feedback action of ICB therapy has potential for improving efficacy of cancer immunotherapies.


Subject(s)
Carcinoma, Hepatocellular , Interferon Type I , Liver Neoplasms , Humans , Immunoglobulin G , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Immunotherapy/methods
2.
Nature ; 628(8007): 313-319, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570689

ABSTRACT

Transition metal tellurides (TMTs) have been ideal materials for exploring exotic properties in condensed-matter physics, chemistry and materials science1-3. Although TMT nanosheets have been produced by top-down exfoliation, their scale is below the gram level and requires a long processing time, restricting their effective application from laboratory to market4-8. We report the fast and scalable synthesis of a wide variety of MTe2 (M = Nb, Mo, W, Ta, Ti) nanosheets by the solid lithiation of bulk MTe2 within 10 min and their subsequent hydrolysis within seconds. Using NbTe2 as a representative, we produced more than a hundred grams (108 g) of NbTe2 nanosheets with 3.2 nm mean thickness, 6.2 µm mean lateral size and a high yield (>80%). Several interesting quantum phenomena, such as quantum oscillations and giant magnetoresistance, were observed that are generally restricted to highly crystalline MTe2 nanosheets. The TMT nanosheets also perform well as electrocatalysts for lithium-oxygen batteries and electrodes for microsupercapacitors (MSCs). Moreover, this synthesis method is efficient for preparing alloyed telluride, selenide and sulfide nanosheets. Our work opens new opportunities for the universal and scalable synthesis of TMT nanosheets for exploring new quantum phenomena, potential applications and commercialization.

3.
Proc Natl Acad Sci U S A ; 121(6): e2315990121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38289960

ABSTRACT

Immune-mediated necrotizing myopathy (IMNM) is an autoimmune disorder associated with the presence of autoantibodies, characterized by severe clinical presentation with rapidly progressive muscular weakness and elevated levels of creatine kinase, while traditional pharmacological approaches possess varying and often limited effects. Considering the pathogenic role of autoantibodies, chimeric antigen receptor (CAR)-T cells targeting B cell maturation antigen (BCMA) have emerged as a promising therapeutic strategy. We reported here a patient with anti-signal recognition particle IMNM refractory to multiple available therapies, who was treated with BCMA-targeting CAR-T cells, exhibited favorable safety profiles, sustained reduction in pathogenic autoantibodies, and persistent clinical improvements over 18 mo. Longitudinal single-cell RNA, B cell receptor, T cell receptor sequencing analysis presented the normalization of immune microenvironment after CAR-T cell infusion, including reconstitution of B cell lineages, replacement of T cell subclusters, and suppression of overactivated immune cells. Analysis on characteristics of CAR-T cells in IMNM demonstrated a more active expansion of CD8+ CAR-T cells, with a dynamic phenotype shifting pattern similar in CD4+ and CD8+ CAR-T cells. A comparison of CD8+ CAR-T cells in patients with IMNM and those with malignancies collected at different timepoints revealed a more NK-like phenotype with enhanced tendency of cell death and neuroinflammation and inhibited proliferating ability of CD8+ CAR-T cells in IMNM while neuroinflammation might be the distinct characteristics. Further studies are warranted to define the molecular features of CAR-T cells in autoimmunity and to seek higher efficiency and longer persistence of CAR-T cells in treating autoimmune disorders.


Subject(s)
Autoimmune Diseases , Multiple Myeloma , Muscular Diseases , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/drug therapy , B-Cell Maturation Antigen , Neuroinflammatory Diseases , Immunotherapy, Adoptive , Autoimmune Diseases/therapy , Autoantibodies , Muscular Diseases/therapy , Single-Cell Analysis , Cell- and Tissue-Based Therapy , Tumor Microenvironment
4.
Proc Natl Acad Sci U S A ; 120(1): e2209990120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36577069

ABSTRACT

Microglia play a critical role in the clearance of myelin debris, thereby ensuring functional recovery from neural injury. Here, using mouse model of demyelination following two-point LPC injection, we show that the microglial autophagic-lysosomal pathway becomes overactivated in response to severe demyelination, leading to lipid droplet accumulation and a dysfunctional and pro-inflammatory microglial state, and finally failed myelin debris clearance and spatial learning deficits. Data from genetic approaches and pharmacological modulations, via microglial Atg5 deficient mice and intraventricular BAF A1 administration, respectively, demonstrate that staged suppression of excessive autophagic-lysosomal activation in microglia, but not sustained inhibition, results in better myelin debris degradation and exerts protective effects against demyelination. Combined multi-omics results in vitro further showed that enhanced lipid metabolism, especially the activation of the linoleic acid pathway, underlies this protective effect. Supplementation with conjugated linoleic acid (CLA), both in vivo and in vitro, could mimic these effects, including attenuating inflammation and restoring microglial pro-regenerative properties, finally resulting in better recovery from demyelination injuries and improved spatial learning function, by activating the peroxisome proliferator-activated receptor (PPAR-γ) pathway. Therefore, we propose that pharmacological inhibition targeting microglial autophagic-lysosomal overactivation or supplementation with CLA could represent a potential therapeutic strategy in demyelinated disorders.


Subject(s)
Demyelinating Diseases , Microglia , Mice , Animals , Microglia/metabolism , Linoleic Acid/metabolism , Autophagy , Demyelinating Diseases/metabolism , Regeneration
5.
Plant J ; 118(4): 1218-1231, 2024 May.
Article in English | MEDLINE | ID: mdl-38323895

ABSTRACT

Borneol, camphor, and bornyl acetate are highly promising monoterpenoids widely used in medicine, flavor, food, and chemical applications. Bornyl diphosphate (BPP) serves as a common precursor for the biosynthesis of these monoterpenoids. Although bornyl diphosphate synthase (BPPS) that catalyzes the cyclization of geranyl diphosphate (GPP) to BPP has been identified in multiple plants, the enzyme responsible for the hydrolysis of BPP to produce borneol has not been reported. Here, we conducted in vitro and in vivo functional characterization to identify the Nudix hydrolase WvNUDX24 from W. villosa, which specifically catalyzes the hydrolysis of BPP to generate bornyl phosphate (BP), and then BP forms borneol under the action of phosphatase. Subcellular localization experiments indicated that the hydrolysis of BPP likely occurs in the cytoplasm. Furthermore, site-directed mutagenesis experiments revealed that four critical residues (R84, S96, P98, and G99) for the hydrolysis activity of WvNUDX24. Additionally, the functional identification of phosphatidic acid phosphatase (PAP) demonstrated that WvPAP5 and WvPAP10 were able to hydrolyze geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate (FPP) to generate geranylgeranyl phosphate (GGP) and farnesyl phosphate (FP), respectively, but could not hydrolyze BPP, GPP, and neryl diphosphate (NPP) to produce corresponding monophosphate products. These findings highlight the essential role of WvNUDX24 in the first step of BPP hydrolysis to produce borneol and provide genetic elements for the production of BPP-related terpenoids through plant metabolic engineering and synthetic biology.


Subject(s)
Camphanes , Nudix Hydrolases , Plant Proteins , Pyrophosphatases , Pyrophosphatases/metabolism , Pyrophosphatases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Camphanes/metabolism , Brassicaceae/genetics , Brassicaceae/enzymology , Brassicaceae/metabolism , Polyisoprenyl Phosphates/metabolism
6.
Gastroenterology ; 166(6): 1069-1084, 2024 06.
Article in English | MEDLINE | ID: mdl-38445519

ABSTRACT

BACKGROUND & AIMS: Although the presence of tertiary lymphoid structures (TLS) correlates with positive responses to immunotherapy in many solid malignancies, the mechanism by which TLS enhances antitumor immunity is not well understood. The present study aimed to investigate the underlying cross talk circuits between B cells and tissue-resident memory T (Trm) cells within the TLS and to understand their role in the context of immunotherapy. METHODS: Immunostaining and H&E staining of TLS and chemokine (C-X-C motif) ligand 13 (CXCL13)+ cluster of differentiation (CD)103+CD8+ Trm cells were performed on tumor sections from patients with gastric cancer (GC). The mechanism of communication between B cells and CXCL13+CD103+CD8+ Trm cells was determined in vitro and in vivo. The effect of CXCL13+CD103+CD8+ Trm cells in suppressing tumor growth was evaluated through anti-programmed cell death protein (PD)-1 therapy. RESULTS: The presence of TLS and CXCL13+CD103+CD8+ Trm cells in tumor tissues favored a superior response to anti-PD-1 therapy in patients with GC. Additionally, our research identified that activated B cells enhanced CXCL13 and granzyme B secretion by CD103+CD8+ Trm cells. Mechanistically, B cells facilitated the glycolysis of CD103+CD8+ Trm cells through the lymphotoxin-α/tumor necrosis factor receptor 2 (TNFR2) axis, and the mechanistic target of rapamycin signaling pathway played a critical role in CD103+CD8+ Trm cells glycolysis during this process. Moreover, the presence of TLS and CXCL13+CD103+CD8+ Trm cells correlated with potent responsiveness to anti-PD-1 therapy in a TNFR2-dependent manner. CONCLUSIONS: This study further reveals a crucial role for cellular communication between TLS-associated B cell and CXCL13+CD103+CD8+ Trm cells in antitumor immunity, providing valuable insights into the potential use of the lymphotoxin-α/TNFR2 axis within CXCL13+CD103+CD8+ Trm cells for advancing immunotherapy strategies in GC.


Subject(s)
Antigens, CD , B-Lymphocytes , CD8-Positive T-Lymphocytes , Chemokine CXCL13 , Immune Checkpoint Inhibitors , Integrin alpha Chains , Memory T Cells , Programmed Cell Death 1 Receptor , Stomach Neoplasms , Tertiary Lymphoid Structures , Chemokine CXCL13/metabolism , Humans , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/drug effects , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Stomach Neoplasms/therapy , Stomach Neoplasms/drug therapy , Antigens, CD/metabolism , Integrin alpha Chains/metabolism , Integrin alpha Chains/immunology , Memory T Cells/immunology , Memory T Cells/metabolism , Animals , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Granzymes/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , Immunologic Memory , Signal Transduction/immunology , Tumor Microenvironment/immunology , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Mice , Immunotherapy/methods , Cell Line, Tumor
7.
Gastroenterology ; 166(3): 466-482, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38065340

ABSTRACT

BACKGROUND & AIMS: Although immunotherapy shows substantial advancement in colorectal cancer (CRC) with microsatellite instability high, it has limited efficacy for CRC with microsatellite stability (MSS). Identifying combinations that reverse immune suppression and prime MSS tumors for current immunotherapy approaches remains an urgent need. METHODS: An in vitro CRISPR screen was performed using coculture models of primary tumor cells and autologous immune cells from MSS CRC patients to identify epigenetic targets that could enhance immunotherapy efficacy in MSS tumors. RESULTS: We revealed EHMT2, a histone methyltransferase, as a potential target for MSS CRC. EHMT2 inhibition transformed the immunosuppressive microenvironment of MSS tumors into an immunomodulatory one by altering cytokine expression, leading to T-cell-mediated cytotoxicity activation and improved responsiveness to anti-PD1 treatment. We observed galectin-7 up-regulation upon EHMT2 inhibition, which converted a "cold" MSS tumor environment into a T-cell-inflamed one. Mechanistically, CHD4 repressed galectin-7 expression by recruiting EHMT2 to form a cotranscriptional silencing complex. Galectin-7 administration enhanced anti-PD1 efficacy in MSS CRC, serving as a potent adjunct cytokine therapy. CONCLUSIONS: Our findings suggest that targeting the EHMT2/galectin-7 axis could provide a novel combination strategy for immunotherapy in MSS CRC.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Immunotherapy , Cytokines , Galectins/genetics , Microsatellite Repeats , Microsatellite Instability , Tumor Microenvironment , Histocompatibility Antigens , Histone-Lysine N-Methyltransferase
8.
Development ; 149(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35546066

ABSTRACT

Mammalian early embryo cells have complex DNA repair mechanisms to maintain genomic integrity, and homologous recombination (HR) plays the main role in response to double-strand DNA breaks (DSBs) in these cells. Polo-like kinase 1 (PLK1) participates in the HR process and its overexpression has been shown to occur in a variety of human cancers. Nevertheless, the regulatory mechanism of PLK1 remains poorly understood, especially during the S and G2 phase. Here, we show that protein phosphatase 4 catalytic subunit (PPP4C) deletion causes severe female subfertility due to accumulation of DNA damage in oocytes and early embryos. PPP4C dephosphorylated PLK1 at the S137 site, negatively regulating its activity in the DSB response in early embryonic cells. Depletion of PPP4C induced sustained activity of PLK1 when cells exhibited DNA lesions that inhibited CHK2 and upregulated the activation of CDK1, resulting in inefficient loading of the essential HR factor RAD51. On the other hand, when inhibiting PLK1 in the S phase, DNA end resection was restricted. These results demonstrate that PPP4C orchestrates the switch between high-PLK1 and low-PLK1 periods, which couple the checkpoint to HR.


Subject(s)
DNA Breaks, Double-Stranded , Recombinational DNA Repair , Animals , Cell Cycle Proteins , Cell Line , DNA/genetics , DNA End-Joining Repair , DNA Repair/genetics , Embryonic Development/genetics , Female , Homologous Recombination , Mammals/genetics , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Polo-Like Kinase 1
9.
Hepatology ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38537134

ABSTRACT

BACKGROUND AND AIMS: HBV infection is a major etiology of acute-on-chronic liver failure (ACLF). At present, the pattern and regulation of hepatocyte death during HBV-ACLF progression are still undefined. Evaluating the mode of cell death and its inducers will provide new insights for developing therapeutic strategies targeting cell death. In this study, we aimed to elucidate whether and how immune landscapes trigger hepatocyte death and lead to the progression of HBV-related ACLF. APPROACH AND RESULTS: We identified that pyroptosis represented the main cell death pattern in the liver of patients with HBV-related ACLF. Deficiency of MHC-I in HBV-reactivated hepatocytes activated cytotoxic NK cells, which in turn operated in a perforin/granzyme-dependent manner to trigger GSDMD/caspase-8-dependent pyroptosis of hepatocytes. Neutrophils selectively accumulated in the pyroptotic liver, and HMGB1 derived from the pyroptotic liver constituted an important factor triggering the generation of pathogenic extracellular traps in neutrophils (NETs). Clinically, elevated plasma levels of myeloperoxidase-DNA complexes were a promising prognostic biomarker for HBV-related ACLF. More importantly, targeting GSDMD pyroptosis-HMGB1 release in the liver abrogates NETs that intercept the development of HBV-related ACLF. CONCLUSIONS: Studying the mechanisms that selectively modulate GSDMD-dependent pyroptosis, as well as its immune landscapes, will provide a novel strategy for restoring the liver function of patients with HBV-related ACLF.

10.
Brain ; 147(1): 163-176, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37740498

ABSTRACT

Microglia-mediated neuroinflammation contributes to acute demyelination in neuromyelitis optica spectrum disorders (NMOSD). Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in the CSF has been associated with microglial activation in several neurodegenerative diseases. However, the basis for this immune-mediated attack and the pathophysiological role of sTREM2 in NMOSD remain to be elucidated. Here, we performed Mendelian randomization analysis and identified a genetic association between increased CSF sTREM2 and NMOSD risk. CSF sTREM2 was elevated in patients with NMOSD and was positively correlated with neural injury and other neuroinflammation markers. Single-cell RNA sequencing of human macrophage/microglia-like cells in CSF, a proxy for microglia, showed that increased CSF sTREM2 was positively associated with microglial dysfunction in patients with NMOSD. Furthermore, we demonstrated that sTREM2 is a reliable biomarker of microglial activation in a mouse model of NMOSD. Using unbiased transcriptomic and lipidomic screens, we identified that excessive activation, overwhelmed phagocytosis of myelin debris, suppressed lipid metabolism and enhanced glycolysis underlie sTREM2-mediated microglial dysfunction, possibly through the nuclear factor kappa B (NF-κB) signalling pathway. These molecular and cellular findings provide a mechanistic explanation for the genetic association between CSF sTREM2 and NMOSD risk and indicate that sTREM2 could be a potential biomarker of NMOSD progression and a therapeutic target for microglia-mediated neuroinflammation.


Subject(s)
Alzheimer Disease , Neuromyelitis Optica , Animals , Mice , Humans , Microglia/metabolism , Alzheimer Disease/metabolism , Neuromyelitis Optica/genetics , Neuromyelitis Optica/metabolism , Neuroinflammatory Diseases , Biomarkers/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics
11.
Mol Ther ; 32(4): 1110-1124, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38341612

ABSTRACT

Whether and how tumor intrinsic signature determines macrophage-elicited metastasis remain elusive. Here, we show, in detailed studies of data regarding 7,477 patients of 20 types of human cancers, that only 13.8% ± 2.6%/27.9% ± 3.03% of patients with high macrophage infiltration index exhibit early recurrence/vascular invasion. In parallel, although macrophages enhance the motility of various hepatoma cells, their enhancement intensity is significantly heterogeneous. We identify that the expression of malignant Dicer, a ribonuclease that cleaves miRNA precursors into mature miRNAs, determines macrophage-elicited metastasis. Mechanistically, the downregulation of Dicer in cancer cells leads to defects in miRNome targeting NF-κB signaling, which in turn enhances the ability of cancer cells to respond to macrophage-related inflammatory signals and ultimately promotes metastasis. Importantly, transporting miR-26b-5p, the most potential miRNA targeting NF-κB signaling in hepatocellular carcinoma, can effectively reverse macrophage-elicited metastasis of hepatoma in vivo. Our results provide insights into the crosstalk between Dicer-elicited miRNome and cancer immune microenvironments and suggest that strategies to remodel malignant cell miRNome may overcome pro-tumorigenic activities of inflammatory cells.


Subject(s)
Carcinoma, Hepatocellular , MicroRNAs , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Carcinoma, Hepatocellular/pathology , Signal Transduction/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Macrophages/metabolism , Cell Line, Tumor , Tumor Microenvironment/genetics
12.
Funct Integr Genomics ; 24(2): 51, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446273

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract with high morbidity and mortality. There is growing evidence that GRK2 plays a key role in the development and progression of several human cancers. However, the role and potential mechanisms of GRK2 in colon cancer (COAD) are unclear. METHODS: The expression data of GRK2 was downloaded from The Cancer Genome Atlas database (TCGA). Variation in GRK2 was explored based on the cBioPortal database. The TIMER and TISCH2 databases were used to analyse the relationship between GRK2 expression and tumor immune microenvironment (TME). A log-rank test was used to compare the prognosis of high and low expression of GRK2 groups. Detecting the effect of GRK2 on cell cycle and apoptosis induced by 5-Fluorouracil (5-FU) through the flow cytometry and detection of apoptosis-related molecules by Western blot. RESULTS: We demonstrated that GRK2 has a potential oncogenic role. GRK2 expression was upregulated in COAD, which predicted poorer overall survival in COAD patients. The cellular assays showed that GRK2 plays a role in the growth and proliferation of colon cancer cells, also the expression of GRK2 have relationship with the sensitivity of 5-FU and cell cycle progression. CONCLUSIONS: Our results suggest that high GRK2 expression is closely associated with the development of tumor and affects the 5-FU sensitivity.


Subject(s)
Colonic Neoplasms , Humans , Apoptosis , Fluorouracil , Tumor Microenvironment
13.
Anal Chem ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953495

ABSTRACT

Long noncoding RNAs (lncRNAs) act as the dynamic regulatory molecules that control the expression of genes and affect numerous biological processes, and their dysregulation is associated with tumor progression. Herein, we develop a fluorescent light-up aptasensor to simultaneously measure multiple lncRNAs in living cells and breast tissue samples based on the DNAzyme-mediated cleavage reaction and transcription-driven synthesis of light-up aptamers. When target lncRNAs are present, they can be recognized by template probes to form the active DNAzyme structures, initiating the T4 PNK-catalyzed dephosphorylation-triggered extension reaction to generate double-strand DNAs with the T7 promoter sequences. The corresponding T7 promoters can initiate the transcription amplification catalyzed by the T7 RNA polymerase to generate abundant Broccoli aptamers and malachite green aptamers, which can bind DFHBI-1T and MG to generate strong fluorescence signals. Taking advantage of the good selectivity of DNAzyme-mediated cleavage of lncRNAs, high amplification efficiency of T7 transcription-driven amplification reaction, and bright fluorescence of the RNA aptamer-fluorophore complex, this method exhibits high sensitivity with a detection limit of 21.4 aM for lncRNA HOTAIR and 18.47 aM for lncRNA MALAT1, and it can accurately measure multiple lncRNAs in both tumor cell lines and breast tissue samples, providing a powerful paradigm for biomedical research and early clinic diagnostics.

14.
Anal Chem ; 96(13): 5323-5330, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38501982

ABSTRACT

Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.


Subject(s)
DNA-Directed DNA Polymerase , DNA , Guanine/analogs & derivatives , Humans , DNA/genetics , DNA-Directed DNA Polymerase/metabolism , DNA Damage , Biomarkers , DNA Repair
15.
Biochem Biophys Res Commun ; 717: 150028, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38714016

ABSTRACT

Mycoplasma pneumoniae (MP),as the most commonly infected respiratory pathogen in community-acquired pneumonia in preschool children,has becoming a prominent factor affecting children's respiratory health.Currently, there is a lack of easy, rapid, and accurate laboratory testing program for MP infection, which causes comparatively difficulty for clinical diagnostic.Here,we utilize loop-mediated isothermal amplification (LAMP) to amplify and characterize the P1 gene of MP, combined with nucleic acid lateral flow (NALF) for fast and visuallized detection of MP.Furthermore, we evaluated and analyzed the sensitivity, specificity and methodological consistency of the method.The results showed that the limit of detection(LoD) of MP-LAMP-NALF assay was down to 100 copys per reaction and there was no cross-reactivity with other pathogens infected the respiratory system. The concordance rate between MP-LAMP-NALF assay with quantitative real-time PCR was 94.3 %,which exhibiting excellent testing performance.We make superior the turnaround time of the MP-LAMP-NALF assay, which takes only about 50 min. In addition, there is no need for precision instruments and no restriction on the laboratory site.Collectively, LAMP-NALF assay targeting the P1 gene for Mycoplasma pneumoniae detection was a easy, precise and visual test which could be widely applied in outpatient and emergency departments or primary hospitals.When further optimized, it could be used as "point-of-care testing" of pathogens or multiple testing for pathogens.


Subject(s)
Molecular Diagnostic Techniques , Mycoplasma pneumoniae , Nucleic Acid Amplification Techniques , Pneumonia, Mycoplasma , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Nucleic Acid Amplification Techniques/methods , Humans , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , Limit of Detection , DNA, Bacterial/genetics
16.
Ann Rheum Dis ; 83(5): 608-623, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38290829

ABSTRACT

OBJECTIVES: The current work aimed to provide a comprehensive single-cell landscape of lupus nephritis (LN) kidneys, including immune and non-immune cells, identify disease-associated cell populations and unravel their participation within the kidney microenvironment. METHODS: Single-cell RNA and T cell receptor sequencing were performed on renal biopsy tissues from 40 patients with LN and 6 healthy donors as controls. Matched peripheral blood samples from seven LN patients were also sequenced. Multiplex immunohistochemical analysis was performed on an independent cohort of 60 patients and validated using flow cytometric characterisation of human kidney tissues and in vitro assays. RESULTS: We uncovered a notable enrichment of CD163+ dendritic cells (DC3s) in LN kidneys, which exhibited a positive correlation with the severity of LN. In contrast to their counterparts in blood, DC3s in LN kidney displayed activated and highly proinflammatory phenotype. DC3s showed strong interactions with CD4+ T cells, contributing to intrarenal T cell clonal expansion, activation of CD4+ effector T cell and polarisation towards Th1/Th17. Injured proximal tubular epithelial cells (iPTECs) may orchestrate DC3 activation, adhesion and recruitment within the LN kidneys. In cultures, blood DC3s treated with iPTECs acquired distinct capabilities to polarise Th1/Th17 cells. Remarkably, the enumeration of kidney DC3s might be a potential biomarker for induction treatment response in LN patients. CONCLUSION: The intricate interplay involving DC3s, T cells and tubular epithelial cells within kidneys may substantially contribute to LN pathogenesis. The enumeration of renal DC3 holds potential as a valuable stratification feature for guiding LN patient treatment decisions in clinical practice.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Biomarkers/metabolism , Dendritic Cells/metabolism , Kidney/pathology , Lupus Erythematosus, Systemic/pathology , Lupus Nephritis/pathology , Th1 Cells , Antigens, Differentiation, Myelomonocytic , Antigens, CD
17.
Plant Physiol ; 193(2): 1244-1262, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37427874

ABSTRACT

Wurfbainia longiligularis and Wurfbainia villosa are both rich in volatile terpenoids and are 2 primary plant sources of Fructus Amomi used for curing gastrointestinal diseases. Metabolomic profiling has demonstrated that bornyl diphosphate (BPP)-related terpenoids are more abundant in the W. villosa seeds and have a wider tissue distribution in W. longiligularis. To explore the genetic mechanisms underlying the volatile terpenoid divergence, a high-quality chromosome-level genome of W. longiligularis (2.29 Gb, contig N50 of 80.39 Mb) was assembled. Functional characterization of 17 terpene synthases (WlTPSs) revealed that WlBPPS, along with WlTPS 24/26/28 with bornyl diphosphate synthase (BPPS) activity, contributes to the wider tissue distribution of BPP-related terpenoids in W. longiligularis compared to W. villosa. Furthermore, transgenic Nicotiana tabacum showed that the GCN4-motif element positively regulates seed expression of WvBPPS and thus promotes the enrichment of BPP-related terpenoids in W. villosa seeds. Systematic identification and analysis of candidate TPS in 29 monocot plants from 16 families indicated that substantial expansion of TPS-a and TPS-b subfamily genes in Zingiberaceae may have driven increased diversity and production of volatile terpenoids. Evolutionary analysis and functional identification of BPPS genes showed that BPP-related terpenoids may be distributed only in the Zingiberaceae of monocot plants. This research provides valuable genomic resources for breeding and improving Fructus Amomi with medicinal and edible value and sheds light on the evolution of terpenoid biosynthesis in Zingiberaceae.


Subject(s)
Alkyl and Aryl Transferases , Terpenes , Humans , Terpenes/metabolism , Diphosphates , Plant Breeding , Fruit/genetics , Fruit/metabolism , Plants/metabolism , Alkyl and Aryl Transferases/genetics
18.
J Exp Bot ; 75(10): 3188-3200, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38401150

ABSTRACT

The rhizotoxicity of protons (H+) in acidic soils is a fundamental constraint that results in serious yield losses. However, the mechanisms underlying H+-mediated inhibition of root growth are poorly understood. In this study, we revealed that H+-induced root growth inhibition in Arabidopsis depends considerably on excessive iron deposition in the root apoplast. Reducing such aberrant iron deposition by decreasing the iron supply or disrupting the ferroxidases LOW PHOSPHATE ROOT 1 (LPR) and LPR2 attenuates the inhibitory effect of H+ on primary root growth efficiently. Further analysis showed that excessive iron deposition triggers a burst of highly reactive oxygen species, consequently impairing normal root development. Our study uncovered a valuable strategy for improving the ability of plants to tolerate H+ toxicity by manipulating iron availability.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Iron , Plant Roots , Plant Roots/growth & development , Plant Roots/metabolism , Iron/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Hydrogen-Ion Concentration , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Reactive Oxygen Species/metabolism
19.
Br J Surg ; 111(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37943801

ABSTRACT

BACKGROUND: Right hemicolectomy is the standard treatment for right-sided colon cancer. There is variation in the technical aspects of performing right hemicolectomy as well as in short-term outcomes. It is therefore necessary to explore best clinical practice following right hemicolectomy in expert centres. METHODS: This snapshot study of right hemicolectomy for colon cancer in China was a prospective, multicentre cohort study in which 52 tertiary hospitals participated. Eligible patients with stage I-III right-sided colon cancer who underwent elective right hemicolectomy were consecutively enrolled in all centres over 10 months. The primary endpoint was the incidence of postoperative 30-day anastomotic leak. RESULTS: Of the 1854 patients, 89.9 per cent underwent laparoscopic surgery and 52.3 per cent underwent D3 lymph node dissection. The overall 30-day morbidity and mortality were 11.7 and 0.2 per cent, respectively. The 30-day anastomotic leak rate was 1.4 per cent. In multivariate analysis, ASA grade > II (P < 0.001), intraoperative blood loss > 50 ml (P = 0.044) and D3 lymph node dissection (P = 0.008) were identified as independent risk factors for postoperative morbidity. Extracorporeal side-to-side anastomosis (P = 0.031), intraoperative blood loss > 50 ml (P = 0.004) and neoadjuvant chemotherapy (P = 0.004) were identified as independent risk factors for anastomotic leak. CONCLUSION: In high-volume expert centres in China, laparoscopic resection with D3 lymph node dissection was performed in most patients with right-sided colon cancer, and overall postoperative morbidity and mortality was low. Further studies are needed to explore the optimal technique for right hemicolectomy in order to improve outcomes further.


Subject(s)
Colonic Neoplasms , Laparoscopy , Humans , Anastomotic Leak/epidemiology , Anastomotic Leak/etiology , Anastomotic Leak/surgery , Cohort Studies , Prospective Studies , Blood Loss, Surgical , Colonic Neoplasms/pathology , Colectomy/adverse effects , Colectomy/methods , Morbidity , Risk Factors , Laparoscopy/adverse effects , Laparoscopy/methods , Retrospective Studies
20.
Chemistry ; 30(25): e202400236, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38424002

ABSTRACT

The insertion of carbonyl into C(sp2)-Pd(II) σ-bond (Grignard-type addition) was not established until the 1990s. While this elemental reaction has been well explored since then, its application in Pd(0) asymmetric catalysis remain elusive. Herein, we report the Pd(0)-catalyzed asymmetric intramolecular Grignard-type reaction of vinyl iodide-carbonyl in the presence of HCO2H additive, affording cyclic allylic alcohol with good to excellent enantioselectivity and diastereoselectivity. Mechanistic studies suggested that besides serving as an efficient reductant, HCO2H is also capable of facilitating protonation of the involved secondary alkoxyl-Pd(II), thus completely suppressing the ß-H elimination. Moreover, no KIE was found in the competing reaction between vinyl iodide-aldehyde and 1-deuterated one, demonstrating the facile step of aldehyde insertion.

SELECTION OF CITATIONS
SEARCH DETAIL