Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Nucleic Acids Res ; 52(D1): D1097-D1109, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37831118

ABSTRACT

Antibody-drug conjugates (ADCs) are a class of innovative biopharmaceutical drugs, which, via their antibody (mAb) component, deliver and release their potent warhead (a.k.a. payload) at the disease site, thereby simultaneously improving the efficacy of delivered therapy and reducing its off-target toxicity. To design ADCs of promising efficacy, it is crucial to have the critical data of pharma-information and biological activities for each ADC. However, no such database has been constructed yet. In this study, a database named ADCdb focusing on providing ADC information (especially its pharma-information and biological activities) from multiple perspectives was thus developed. Particularly, a total of 6572 ADCs (359 approved by FDA or in clinical trial pipeline, 501 in preclinical test, 819 with in-vivo testing data, 1868 with cell line/target testing data, 3025 without in-vivo/cell line/target testing data) together with their explicit pharma-information was collected and provided. Moreover, a total of 9171 literature-reported activities were discovered, which were identified from diverse clinical trial pipelines, model organisms, patient/cell-derived xenograft models, etc. Due to the significance of ADCs and their relevant data, this new database was expected to attract broad interests from diverse research fields of current biopharmaceutical drug discovery. The ADCdb is now publicly accessible at: https://idrblab.org/adcdb/.


Subject(s)
Databases, Pharmaceutical , Drug Discovery , Immunoconjugates , Animals , Humans , Antibodies/therapeutic use , Antineoplastic Agents/therapeutic use , Biological Products , Cell Line, Tumor , Disease Models, Animal , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use
2.
Brief Bioinform ; 24(3)2023 05 19.
Article in English | MEDLINE | ID: mdl-37020333

ABSTRACT

Molecular clustering analysis has been developed to facilitate visual inspection in the process of structure-based virtual screening. However, traditional methods based on molecular fingerprints or molecular descriptors limit the accuracy of selecting active hit compounds, which may be attributed to the lack of representations of receptor structural and protein-ligand interaction during the clustering. Here, a novel deep clustering framework named ClusterX is proposed to learn molecular representations of protein-ligand complexes and cluster the ligands. In ClusterX, the graph was used to represent the protein-ligand complex, and the joint optimisation can be used efficiently for learning the cluster-friendly features. Experiments on the KLIFs database show that the model can distinguish well between the binding modes of different kinase inhibitors. To validate the effectiveness of the model, the clustering results on the virtual screening dataset further demonstrated that ClusterX achieved better or more competitive performance against traditional methods, such as SIFt and extended connectivity fingerprints. This framework may provide a unique tool for clustering analysis and prove to assist computational medicinal chemists in visual decision-making.


Subject(s)
Ligands , Cluster Analysis
3.
Brief Bioinform ; 24(5)2023 09 20.
Article in English | MEDLINE | ID: mdl-37605947

ABSTRACT

Predicting the biological properties of molecules is crucial in computer-aided drug development, yet it's often impeded by data scarcity and imbalance in many practical applications. Existing approaches are based on self-supervised learning or 3D data and using an increasing number of parameters to improve performance. These approaches may not take full advantage of established chemical knowledge and could inadvertently introduce noise into the respective model. In this study, we introduce a more elegant transformer-based framework with focused attention for molecular representation (TransFoxMol) to improve the understanding of artificial intelligence (AI) of molecular structure property relationships. TransFoxMol incorporates a multi-scale 2D molecular environment into a graph neural network + Transformer module and uses prior chemical maps to obtain a more focused attention landscape compared to that obtained using existing approaches. Experimental results show that TransFoxMol achieves state-of-the-art performance on MoleculeNet benchmarks and surpasses the performance of baselines that use self-supervised learning or geometry-enhanced strategies on small-scale datasets. Subsequent analyses indicate that TransFoxMol's predictions are highly interpretable and the clever use of chemical knowledge enables AI to perceive molecules in a simple but rational way, enhancing performance.


Subject(s)
Artificial Intelligence , Benchmarking , Neural Networks, Computer
4.
Mol Ther ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38872307

ABSTRACT

Efferocytosis, the clearance of apoptotic cells by macrophages, plays a crucial role in inflammatory responses and effectively prevents secondary necrosis. However, the mechanisms underlying efferocytosis in acute pancreatitis (AP) remain unclear. In this study, we demonstrated the presence of efferocytosis in injured human and mouse pancreatic tissues. We also observed significant upregulation of CD47, an efferocytosis-related the "do not eat me" molecule in injured acinar cells. Subsequently, we used CRISPR-Cas9 gene editing, anti-adeno-associated virus (AAV) gene modification, and anti-CD47 antibody to investigate the potential therapeutic role of AP. CD47 expression was negatively regulated by upstream miR133a, which is controlled by the transcription factor TRIM28. To further investigate the regulation of efferocytosis and reduction of pancreatic necrosis in AP, we used miR-133a-agomir and pancreas-specific AAV-shTRIM28 to modulate CD47 expression. Our findings confirmed that CD47-mediated efferocytosis is critical for preventing pancreatic necrosis and suggest that targeting the TRIM28-miR133a-CD47 axis is clinically relevant for the treatment of AP.

5.
Am J Gastroenterol ; 119(6): 1158-1166, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38587286

ABSTRACT

INTRODUCTION: To investigate whether increased intrapancreatic fat deposition (IPFD) heightens the risk of diseases of the exocrine and endocrine pancreas. METHODS: A prospective cohort study was conducted using data from the UK Biobank. IPFD was quantified using MRI and a deep learning-based framework called nnUNet. The prevalence of fatty change of the pancreas (FP) was determined using sex- and age-specific thresholds. Associations between IPFD and pancreatic diseases were assessed with multivariate Cox-proportional hazard model adjusted for age, sex, ethnicity, body mass index, smoking and drinking status, central obesity, hypertension, dyslipidemia, liver fat content, and spleen fat content. RESULTS: Of the 42,599 participants included in the analysis, the prevalence of FP was 17.86%. Elevated IPFD levels were associated with an increased risk of acute pancreatitis (hazard ratio [HR] per 1 quintile change 1.513, 95% confidence interval [CI] 1.179-1.941), pancreatic cancer (HR per 1 quintile change 1.365, 95% CI 1.058-1.762) and diabetes mellitus (HR per 1 quintile change 1.221, 95% CI 1.132-1.318). FP was also associated with a higher risk of acute pancreatitis (HR 3.982, 95% CI 2.192-7.234), pancreatic cancer (HR 1.976, 95% CI 1.054-3.704), and diabetes mellitus (HR 1.337, 95% CI 1.122-1.593, P = 0.001). DISCUSSION: FP is a common pancreatic disorder. Fat in the pancreas is an independent risk factor for diseases of both the exocrine pancreas and endocrine pancreas.


Subject(s)
Pancreatic Diseases , Humans , Female , Male , Middle Aged , Prospective Studies , United Kingdom/epidemiology , Aged , Pancreatic Diseases/epidemiology , Pancreatic Diseases/metabolism , Pancreatic Diseases/diagnostic imaging , Adult , Magnetic Resonance Imaging , Pancreatitis/epidemiology , Risk Factors , Biological Specimen Banks , Incidence , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/pathology , Intra-Abdominal Fat/diagnostic imaging , Prevalence , Diabetes Mellitus/epidemiology , Pancreas, Exocrine/metabolism , Proportional Hazards Models , Pancreas/diagnostic imaging , Pancreas/pathology , Pancreas/metabolism , UK Biobank
6.
J Chem Inf Model ; 64(12): 4835-4849, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38847742

ABSTRACT

The lymphocyte-specific protein tyrosine kinase (LCK) plays a crucial role in both T-cell development and activation. Dysregulation of LCK signaling has been demonstrated to drive the oncogenesis of T-cell acute lymphoblastic leukemia (T-ALL), thus providing a therapeutic target for leukemia treatment. In this study, we introduced a sophisticated virtual screening strategy combined with biological evaluations to discover potent LCK inhibitors. Our initial approach involved utilizing the PLANET algorithm to assess and contrast various scoring methodologies suitable for LCK inhibitor screening. After effectively evaluating PLANET, we progressed to devise a virtual screening workflow that synergistically combines the strengths of PLANET with the capabilities of Schrödinger's suite. This integrative strategy led to the efficient identification of four potential LCK inhibitors. Among them, compound 1232030-35-1 stood out as the most promising candidate with an IC50 of 0.43 nM. Further in vitro bioassays revealed that 1232030-35-1 exhibited robust antiproliferative effects on T-ALL cells, which was attributed to its ability to suppress the phosphorylations of key molecules in the LCK signaling pathway. More importantly, 1232030-35-1 treatment demonstrated profound in vivo antileukemia efficacy in a human T-ALL xenograft model. In addition, complementary molecular dynamics simulations provided deeper insight into the binding kinetics between 1232030-35-1 and LCK, highlighting the formation of a hydrogen bond with Met319. Collectively, our study established a robust and effective screening strategy that integrates AI-driven and conventional methodologies for the identification of LCK inhibitors, positioning 1232030-35-1 as a highly promising and novel drug-like candidate for potential applications in treating T-ALL.


Subject(s)
Deep Learning , Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Molecular Docking Simulation , Protein Kinase Inhibitors , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Animals , Drug Discovery , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Mice
7.
Bioorg Chem ; 150: 107553, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901279

ABSTRACT

The overexpression of FGFR1 is thought to significantly contribute to the progression of triple-negative breast cancer (TNBC), impacting aspects such as tumorigenesis, growth, metastasis, and drug resistance. Consequently, the pursuit of effective inhibitors for FGFR1 is a key area of research interest. In response to this need, our study developed a hybrid virtual screening method. Utilizing KarmaDock, an innovative algorithm that blends deep learning with molecular docking, alongside Schrödinger's Residue Scanning. This strategy led us to identify compound 6, which demonstrated promising FGFR1 inhibitory activity, evidenced by an IC50 value of approximately 0.24 nM in the HTRF bioassay. Further evaluation revealed that this compound also inhibits the FGFR1 V561M variant with an IC50 value around 1.24 nM. Our subsequent investigations demonstrate that Compound 6 robustly suppresses the migration and invasion capacities of TNBC cell lines, through the downregulation of p-FGFR1 and modulation of EMT markers, highlighting its promise as a potent anti-metastatic therapeutic agent. Additionally, our use of molecular dynamics simulations provided a deeper understanding of the compound's specific binding interactions with FGFR1.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Molecular Dynamics Simulation , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 1 , Triple Negative Breast Neoplasms , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Cell Proliferation/drug effects , Drug Discovery , Cell Movement/drug effects , Molecular Docking Simulation , Cell Line, Tumor , Drug Evaluation, Preclinical
8.
Bioorg Chem ; 142: 106952, 2024 01.
Article in English | MEDLINE | ID: mdl-37952486

ABSTRACT

PARP1 is a multifaceted component of DNA repair and chromatin remodeling, making it an effective therapeutic target for cancer therapy. The recently reported proteolytic targeting chimera (PROTAC) could effectively degrade PARP1 through the ubiquitin-proteasome pathway, expanding the therapeutic application of PARP1 blocking. In this study, a series of nitrogen heterocyclic PROTACs were designed and synthesized through ternary complex simulation analysis based on our previous work. Our efforts have resulted in a potent PARP1 degrader D6 (DC50 = 25.23 nM) with high selectivity due to nitrogen heterocyclic linker generating multiple interactions with the PARP1-CRBN PPI surface, specifically. Moreover, D6 exhibited strong cytotoxicity to triple negative breast cancer cell line MDA-MB-231 (IC50 = 1.04 µM). And the proteomic results showed that the antitumor mechanism of D6 was found that intensifies DNA damage by intercepting the CDC25C-CDK1 axis to halt cell cycle transition in triple-negative breast cancer cells. Furthermore, in vivo study, D6 showed a promising PK property with moderate oral absorption activity. And D6 could effectively inhibit tumor growth (TGI rate = 71.4 % at 40 mg/kg) without other signs of toxicity in MDA-MB-321 tumor-bearing mice. In summary, we have identified an original scaffold and potent PARP1 PROTAC that provided a novel intervention strategy for the treatment of triple-negative breast cancer.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/pathology , Proteomics , Cell Proliferation , Cell Cycle Checkpoints , Nitrogen , Cell Line, Tumor , cdc25 Phosphatases , Poly (ADP-Ribose) Polymerase-1 , CDC2 Protein Kinase
9.
Acta Pharmacol Sin ; 45(8): 1673-1685, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38641746

ABSTRACT

Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 µM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Ferroptosis , Mice, Inbred C57BL , Phenylenediamines , Animals , Ferroptosis/drug effects , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Mice , Male , Phenylenediamines/pharmacology , Phenylenediamines/therapeutic use , Cyclohexylamines/pharmacology , Cyclohexylamines/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism
10.
Arch Pharm (Weinheim) ; : e2400066, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809025

ABSTRACT

Oncogenic overexpression or activation of C-terminal Src kinase (CSK) has been shown to play an important role in triple-negative breast cancer (TNBC) progression, including tumor initiation, growth, metastasis, drug resistance. This revelation has pivoted the focus toward CSK as a potential target for novel treatments. However, until now, there are few inhibitors designed to target the CSK protein. Responding to this, our research has implemented a comprehensive virtual screening protocol. By integrating energy-based screening methods with AI-driven scoring functions, such as Attentive FP, and employing rigorous rescoring methods like Glide docking and molecular mechanics generalized Born surface area (MM/GBSA), we have systematically sought out inhibitors of CSK. This approach led to the discovery of a compound with a potent CSK inhibitory activity, reflected by an IC50 value of 1.6 nM under a homogeneous time-resolved fluorescence (HTRF) bioassay. Subsequently, molecule 2 exhibits strong growth inhibition of MD anderson - metastatic breast (MDA-MB) -231, Hs578T, and SUM159 cells, showing a level of growth inhibition comparable to that observed with dasatinib. Treatment with molecule 2 also induced significant G1 phase accumulation and cell apoptosis. Furthermore, we have explored the explicit binding interactions of the compound with CSK using molecular dynamics simulations, providing valuable insights into its mechanism of action.

11.
BMC Cancer ; 23(1): 184, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36823603

ABSTRACT

BACKGROUND: Double-hit or Triple-hit lymphoma (DHL/THL) is a subset of high-grade B cell lymphoma harboring rearrangements of MYC and BCL2 and/or BCL6, and usually associate with aggressive profile, while current therapies tend to provide poor clinical outcomes and eventually relapsed. Further explorations of DHL at cellular and molecular levels are in demand to offer guidance for clinical activity. METHODS: We collected the peripheral blood of DHL patients and diffused large B cell lymphoma (DLBCL) patients from single institute and converted them into PBMC samples. Mass cytometry was then performed to characterize these samples by 42 antibody markers with samples of healthy people as control. We divided the immune cell subtypes based on the expression profile of surface antigens, and the proportion of each cell subtype was also analyzed. By comparing the data of the DLBCL group and the healthy group, we figured out the distinguished immune cell subtypes of DHL patients according to their abundance and marker expression level. We further analyzed the heterogeneity of DHL samples by pairwise comparison based on clinical characteristics. RESULTS: We found double-positive T cells (DPT) cells were in a significantly high percentage in DHL patients, whereas the ratio of double-negative T cells (DNT) was largely reduced in patients. Besides, CD38 was uniquely expressed at a high level on some naïve B cells of DHL patients, which could be a marker for the diagnosis of DHL (distinguishing from DLBCL), or even be a drug target for the treatment of DHL. In addition, we illustrated the heterogeneity of DHL patients in terms of immune cell landscape, and highlighted TP53 as a major factor that contributes to the heterogeneity of the T cells profile. CONCLUSION: Our study demonstrated the distinct peripheral immune cell profile of DHL patients by contrast to DLBCL patients and healthy people, as well as the heterogeneity within the DHL group, which could provide valuable guidance for the diagnosis and treatment of DHL.


Subject(s)
Leukocytes, Mononuclear , Lymphoma, Large B-Cell, Diffuse , Humans , Leukocytes, Mononuclear/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , B-Lymphocytes/metabolism , Gene Rearrangement , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-bcl-6/genetics
12.
Nucleic Acids Res ; 49(D1): D1381-D1387, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33010159

ABSTRACT

Proteolysis-targeting chimeras (PROTACs), which selectively degrade targeted proteins by the ubiquitin-proteasome system, have emerged as a novel therapeutic technology with potential advantages over traditional inhibition strategies. In the past few years, this technology has achieved substantial progress and two PROTACs have been advanced into phase I clinical trials. However, this technology is still maturing and the design of PROTACs remains a great challenge. In order to promote the rational design of PROTACs, we present PROTAC-DB, a web-based open-access database that integrates structural information and experimental data of PROTACs. Currently, PROTAC-DB consists of 1662 PROTACs, 202 warheads (small molecules that target the proteins of interest), 65 E3 ligands (small molecules capable of recruiting E3 ligases) and 806 linkers, as well as their chemical structures, biological activities, and physicochemical properties. Except the biological activities of warheads and E3 ligands, PROTAC-DB also provides the degradation capacities, binding affinities and cellular activities for PROTACs. PROTAC-DB can be queried with two general searching approaches: text-based (target name, compound name or ID) and structure-based. In addition, for the convenience of users, a filtering tool for the searching results based on the physicochemical properties of compounds is also offered. PROTAC-DB is freely accessible at http://cadd.zju.edu.cn/protacdb/.


Subject(s)
Databases, Chemical , Drug Delivery Systems/methods , Pharmaceutical Preparations/chemistry , Proteasome Endopeptidase Complex/drug effects , Small Molecule Libraries/chemistry , Software , Binding Sites , Drug Discovery , Humans , Internet , Ligands , Pharmaceutical Preparations/classification , Protein Binding , Proteolysis/drug effects , Small Molecule Libraries/classification , Small Molecule Libraries/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects
13.
Entropy (Basel) ; 25(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37628221

ABSTRACT

With the development of information technology, individuals are able to receive rumor information through various channels and subsequently act based on their own perceptions. The significance of the disparity between media and individual cognition in the propagation of rumors cannot be underestimated. In this paper, we establish a dual-layer rumor propagation model considering the differences in individual cognition to study the propagation behavior of rumors in multiple channels. Firstly, we obtain the threshold for rumor disappearance or persistence by solving the equilibrium points and their stability. The threshold is related to the number of media outlets and the number of rumor debunkers. Moreover, we have innovatively designed a class of non-periodic intermittent noise stabilization methods to suppress rumor propagation. This method can effectively control rumor propagation based on a flexible control scheme, and we provide specific expressions for the control intensity. Finally, we have validated the accuracy of the theoretical proofs through experimental simulations.

14.
J Cell Mol Med ; 26(2): 515-526, 2022 01.
Article in English | MEDLINE | ID: mdl-34921503

ABSTRACT

Pancreatic cancer is one of the most notorious diseases for being asymptomatic at early stage and high mortality rate thereafter. However, either chemotherapy or targeted therapy has rarely achieved success in recent clinical trials for pancreatic cancer. Novel therapeutic regimens or agents are urgently in need. Ibr-7 is a novel derivative of ibrutinib, displaying superior antitumour activity in pancreatic cancer cells than ibrutinib. In vitro studies showed that ibr-7 greatly inhibited the proliferation of BxPC-3, SW1990, CFPAC-1 and AsPC-1 cells via the induction of mitochondrial-mediated apoptosis and substantial suppression of mTOR/p70S6K pathway. Moreover, ibr-7 was able to sensitize pancreatic cancer cells to gemcitabine through the efficient repression of TRIM32, which was positively correlated with the proliferation and invasiveness of pancreatic cancer cells. Additionally, knockdown of TRIM32 diminished mTOR/p70S6K activity in pancreatic cancer cells, indicating a positive feedback loop between TRIM32 and mTOR/p70S6K pathway. To conclude, this work preliminarily explored the role of TRIM32 in the malignant properties of pancreatic cancer cells and evaluated the possibility of targeting TRIM32 to enhance effectiveness of gemcitabine, thereby providing a novel therapeutic target for pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , Ribosomal Protein S6 Kinases, 70-kDa , Apoptosis , Cell Line, Tumor , Cell Proliferation , Deoxycytidine/analogs & derivatives , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics , TOR Serine-Threonine Kinases/metabolism , Transcription Factors , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Gemcitabine
15.
BMC Cancer ; 22(1): 9, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34980000

ABSTRACT

PURPOSE: We sought to understand the clinical course and molecular phenotype of patients who showed disease progression after programmed cell death ligand 1 (PD-L1) inhibitor treatment but subsequently responded to PD-1 inhibitor treatment. We also explored the response to PD-1-axis targeted therapy of classical Hodgkin lymphoma (cHL) according to genetically driven PD-L1 and programmed cell death ligand 2 (PD-L2) expression. METHODS: Five patients in a phase II clinical trial of CS1001 (PD-L1 inhibitor) for relapsed or refractory (R/R) cHL were retrospectively reviewed. Formalin-fixed, paraffin-embedded whole tissues from the five patients were evaluated for 9p24.1 genetic alterations based on FISH and the expression of PD-L1, PD-L2, PD-1, major histocompatibility complex (MHC) class I-II, and the tumor microenvironment factorsCD163 and FOXP3 in the microenvironmental niche, as revealed by multiplex immunofluorescence. RESULTS: All five patients showed primary refractory disease during first-line treatment. Four patients received PD-1 inhibitor after dropping out of the clinical trial, and all demonstrated at least a partial response. The progression-free survival ranged from 7 to 28 months (median = 18 months), and 9p24.1 amplification was observed in all five patients at the PD-L1/PD-L2 locus. PD-L1 and PD-L2 were colocalized on Hodgkin Reed-Sternberg (HRS) cells in four of the five (80%) patients. There was differential expression of PD-L1 and PD-L2 in cells in the tumor microenvironment in cHL, especially in HRS cells, background cells and tumor-associated macrophages. CONCLUSIONS: PD-L1 monotherapy may not be sufficient to block the PD-1 pathway; PD-L2 was expressed in HRS and background cells in cHL. The immunologic function of the PD-L2 pathway in anti-tumor activity may be underestimated in R/R cHL. Further study is needed to elucidate the anti-tumor mechanism of PD-1 inhibitor and PD-L1 inhibitor treatment.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Hodgkin Disease/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Ligand 2 Protein/antagonists & inhibitors , Adult , Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/immunology , Clinical Trials, Phase II as Topic , Female , Forkhead Transcription Factors/immunology , Histocompatibility Antigens/immunology , Hodgkin Disease/immunology , Humans , Male , Middle Aged , Programmed Cell Death 1 Receptor/immunology , Progression-Free Survival , Receptors, Cell Surface/immunology , Recurrence , Retrospective Studies , Treatment Outcome , Tumor Microenvironment/immunology
16.
Bioorg Chem ; 125: 105820, 2022 08.
Article in English | MEDLINE | ID: mdl-35569191

ABSTRACT

Immune checkpoint blockade (ICB) by targeting programmed cell death-1/programmed cell death ligand 1 (PD-1/PD-L1) signaling pathway is a promising strategy for tumor immunotherapy. Developing small-molecules inducing PD-L1 protein degradation has been proven as an alternative and useful approach for targeting the immunotherapy pathway. Our previous study showed that Lercanidipine could down-regulate the expression of PD-L1 protein, but its calcium influx antagonistic activity hampers further development. For attenuating the unexpected calcium channel blockade effect, a series of compounds were synthesized and evaluated through structure-activity relationship (SAR) exploration. Amongst, compound F4 exhibited a loss of calcium antagonistic activity, while the PD-L1 degradation activity can still retain. Further studies indicated that F4 degraded PD-L1 dose- and time-dependently, and may function through a lysosomal-dependent manner. Furthermore, compound F4 showed a good bioavailability value of 24.9% in mice. Moreover, the F4-induced PD-L1 degradation strengthened the T cell-mediated killing of tumor cells. Our findings show the discovery of a new PD-L1 degrader, providing a potential strategy for immunotherapy.


Subject(s)
B7-H1 Antigen , Dihydropyridines , Animals , B7-H1 Antigen/metabolism , Calcium , Dihydropyridines/pharmacology , Immunotherapy , Mice , T-Lymphocytes
17.
Bioorg Chem ; 121: 105673, 2022 04.
Article in English | MEDLINE | ID: mdl-35217375

ABSTRACT

Fibroblast growth factor receptor 4 (FGFR4) together with co-receptors modulate the activation of downstream proteins that regulate fundamental processes, and elevated FGFR4 activity is associated with Hepatocellular Carcinoma (HCC). Hence, FGFR4 is a promising therapeutic target for HCC. Based on BLU9931, we designed and synthesized a series of phenylquinazoline derivatives as novel inhibitors of FGFR4 through the covalent reversible strategy. Among them, a novel compound (C3) showed FGFR4 and cell proliferation inhibitory activity. Cellular mechanism studies demonstrated that compound C3 induced apoptosis via the FGFR4 signaling pathway blockage. Further mechanism study showed that C3 has the reversible covalent binding capacity, could be used as a reference for the development of novel FGFR4 covalent reversible inhibitors.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cell Proliferation , Humans , Liver Neoplasms/drug therapy , Quinazolines/pharmacology , Quinazolines/therapeutic use , Receptor, Fibroblast Growth Factor, Type 4/chemistry , Receptor, Fibroblast Growth Factor, Type 4/metabolism
18.
Molecules ; 27(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35458742

ABSTRACT

Nuclear export protein 1 (XPO1), a member of the nuclear export protein-p (Karyopherin-P) superfamily, regulates the transport of "cargo" proteins. To facilitate this important process, which is essential for cellular homeostasis, XPO1 must first recognize and bind the cargo proteins. To inhibit this process, small molecule inhibitors have been designed that inhibit XPO1 activity through covalent binding. However, the scaffolds for these inhibitors are very limited. While virtual screening may be used to expand the diversity of the XPO1 inhibitor skeleton, enormous computational resources would be required to accomplish this using traditional screening methods. In the present study, we report the development of a hybrid virtual screening workflow and its application in XPO1 covalent inhibitor screening. After screening, several promising XPO1 covalent molecules were obtained. Of these, compound 8 performed well in both tumor cell proliferation assays and a nuclear export inhibition assay. In addition, molecular dynamics simulations were performed to provide information on the mode of interaction of compound 8 with XPO1. This research has identified a promising new scaffold for XPO1 inhibitors, and it demonstrates an effective and resource-saving workflow for identifying new covalent inhibitors.


Subject(s)
Neoplasms , Receptors, Cytoplasmic and Nuclear , Active Transport, Cell Nucleus , Humans , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism
19.
Biol Pharm Bull ; 44(12): 1872-1877, 2021.
Article in English | MEDLINE | ID: mdl-34853270

ABSTRACT

FMS-like tyrosine kinase 3 (FLT3) plays a very important role in regulating the proliferation, differentiation and survival of normal hematopoietic stem cells. Internal tandem duplications of the FLT3 gene (FLT3-ITD) mutations are present in 25% of all acute myeloid leukemia (AML) patients and are frequently associated with adverse clinical outcomes. Therefore, FLT3-ITD is a promising target for the treatment of AML. The use of covalent virtual screenings has shown that efficient rational approaches for the rapid discovery of new drugs scaffold. Herein, we report a hybrid virtual screening strategy that led to the discovery of FLT3 inhibitors. Using the combination of non-covalent docking and covalent docking, 8 compounds were found to inhibit FLT3, and G856-8335, S346-0154 are also effective against mutant FLT3. These two compounds also show selectivity to receptor tyrosine kinase (C-KIT), which has the potential for optimization. And this work can be extended to the screening of other covalent inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Leukemia, Myeloid, Acute/drug therapy , Mutation , Protein Kinase Inhibitors/pharmacology , fms-Like Tyrosine Kinase 3/metabolism , Antineoplastic Agents/therapeutic use , Drug Discovery/methods , Humans , Leukemia, Myeloid, Acute/genetics , Molecular Docking Simulation , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-kit/metabolism , fms-Like Tyrosine Kinase 3/genetics
20.
Arch Pharm (Weinheim) ; 354(3): e2000063, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33184958

ABSTRACT

Isocitrate dehydrogenase 2 (IDH2) is a key enzyme in the regulation of cell metabolism. Its mutated type can lead to the accumulation of 2-hydroxyglutarate, which is often related to malignancies such as acute myeloid leukemia. Therefore, it is necessary to find new inhibitors targeting mutant IDH2. Discriminatory analysis-based molecular docking was employed to screen the ChemDiv compound library, which resulted in the identification of three new IDH2R140Q inhibitors with moderate-to-good IC50 values. Among them, compounds 1 and 3 displayed good selectivity against other mutant or wild-type IDH proteins. The most potent compound 1, bearing the [1,2,4]triazolo[1,5-a]pyrimidin scaffold, was subjected to dynamic simulations to provide more information on the binding mode with IDH2R140Q , providing structural clues to further optimize compound 1 as a new mutant IDH2 inhibitor.


Subject(s)
Enzyme Inhibitors/pharmacology , Isocitrate Dehydrogenase/antagonists & inhibitors , Molecular Docking Simulation , Pyrimidines/pharmacology , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL