Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 111(43): 15408-13, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25313077

ABSTRACT

RNA plays myriad roles in the transmission and regulation of genetic information that are fundamentally constrained by its mechanical properties, including the elasticity and conformational transitions of the double-stranded (dsRNA) form. Although double-stranded DNA (dsDNA) mechanics have been dissected with exquisite precision, much less is known about dsRNA. Here we present a comprehensive characterization of dsRNA under external forces and torques using magnetic tweezers. We find that dsRNA has a force-torque phase diagram similar to that of dsDNA, including plectoneme formation, melting of the double helix induced by torque, a highly overwound state termed "P-RNA," and a highly underwound, left-handed state denoted "L-RNA." Beyond these similarities, our experiments reveal two unexpected behaviors of dsRNA: Unlike dsDNA, dsRNA shortens upon overwinding, and its characteristic transition rate at the plectonemic buckling transition is two orders of magnitude slower than for dsDNA. Our results challenge current models of nucleic acid mechanics, provide a baseline for modeling RNAs in biological contexts, and pave the way for new classes of magnetic tweezers experiments to dissect the role of twist and torque for RNA-protein interactions at the single-molecule level.


Subject(s)
DNA/chemistry , RNA, Double-Stranded/chemistry , Torque , Magnetic Phenomena , Nucleic Acid Conformation , Thermodynamics
2.
Nano Lett ; 10(4): 1414-20, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20235508

ABSTRACT

Solid-state nanopores are an emerging class of single-molecule sensors. Whereas most studies so far focused on double-stranded DNA (dsDNA) molecules, exploration of single-stranded DNA (ssDNA) is of great interest as well, for example to employ such a nanopore device to read out the sequence. Here, we study the translocation of long random-sequence ssDNA through nanopores. Using atomic force microscopy, we observe the ssDNA to hybridize into a random coil, forming blobs of around 100 nm in diameter for 7 kb ssDNA. These large entangled structures have to unravel, when they arrive at the pore entrance. Indeed, we observe strong blockade events with a translocation time that is exponentially dependent on voltage, tau approximately e(-V/V(0)). Interestingly, this is very different than for dsDNA, for which tau approximately 1/V. We report translocations of ssDNA but also of ssDNA-dsDNA constructs where we compare the conductance-blockade levels for ssDNA versus dsDNA as a function of voltage.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Hydrogen-Ion Concentration , Nanotechnology/instrumentation , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL