Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 445
Filter
Add more filters

Publication year range
1.
Cell ; 180(2): 278-295.e23, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31978345

ABSTRACT

Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases the risk for Crohn's disease and leprosy. We developed an unbiased liquid chromatography-mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic orthologs additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5'-thioadenosine phosphorylase activity, hence, combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronizes mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Adenine/metabolism , Adenosine/metabolism , Adenosine Deaminase/metabolism , Chromatography, Liquid/methods , HEK293 Cells , Hep G2 Cells , Humans , Intracellular Signaling Peptides and Proteins/physiology , Mass Spectrometry/methods , Multifunctional Enzymes/genetics , Phosphorylation , Proteins/genetics , Purine Nucleotides/metabolism , Purines/metabolism
2.
Nat Immunol ; 21(1): 86-100, 2020 01.
Article in English | MEDLINE | ID: mdl-31844327

ABSTRACT

By developing a high-density murine immunophenotyping platform compatible with high-throughput genetic screening, we have established profound contributions of genetics and structure to immune variation (http://www.immunophenotype.org). Specifically, high-throughput phenotyping of 530 unique mouse gene knockouts identified 140 monogenic 'hits', of which most had no previous immunologic association. Furthermore, hits were collectively enriched in genes for which humans show poor tolerance to loss of function. The immunophenotyping platform also exposed dense correlation networks linking immune parameters with each other and with specific physiologic traits. Such linkages limit freedom of movement for individual immune parameters, thereby imposing genetically regulated 'immunologic structures', the integrity of which was associated with immunocompetence. Hence, we provide an expanded genetic resource and structural perspective for understanding and monitoring immune variation in health and disease.


Subject(s)
Enterobacteriaceae Infections/immunology , Genetic Variation/genetics , High-Throughput Screening Assays/methods , Immunophenotyping/methods , Salmonella Infections/immunology , Animals , Citrobacter/immunology , Enterobacteriaceae Infections/microbiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Salmonella/immunology , Salmonella Infections/microbiology
3.
Nat Immunol ; 20(4): 514, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30862955

ABSTRACT

In the version of this article initially published, the first affiliation lacked 'MRC'; the correct name of the institution is 'MRC Weatherall Institute of Molecular Medicine'. Two designations (SP110Y and ST110H) were incorrect in the legend to Fig. 6f,h,i. The correct text is as follows: for panel f, "...loaded with either the CdtB(105-125)SP110Y (DRB4*SP110Y) or the CdtB(105-125)ST110H (DRB4*ST110H) peptide variants..."; for panel h, "...decorated by the DRB4*SP110Y tetramer (lower-right quadrant), the DRB4*ST110H (upper-left quadrant)..."; and for panel i, "...stained ex vivo with DRB4*SP110Y, DRB4*ST110H...". In Fig. 8e, the final six residues (LTEAFF) of the sequence in the far right column of the third row of the table were missing; the correct sequence is 'CASSYRRTPPLTEAFF'. In the legend to Fig. 8d, a designation (HLyE) was incorrect; the correct text is as follows: "(HlyE?)." Portions of the Acknowledgements section were incorrect; the correct text is as follows: "This work was supported by the UK Medical Research Council (MRC) (MR/K021222/1) (G.N., M.A.G., A.S., V.C., A.J.P.),...the Oxford Biomedical Research Centre (A.J.P., V.C.),...and core funding from the Singapore Immunology Network (SIgN) (E.W.N.) and the SIgN immunomonitoring platform (E.W.N.)." Finally, a parenthetical element was phrased incorrectly in the final paragraph of the Methods subsection "T cell cloning and live fluorescence barcoding"; the correct phrasing is as follows: "...(which in all cases included HlyE, CdtB, Ty21a, Quailes, NVGH308, and LT2 strains and in volunteers T5 and T6 included PhoN)...". Also, in Figs. 3c and 4a, the right outlines of the plots were not visible; in the legend to Fig. 3, panel letter 'f' was not bold; and in Fig. 8f, 'ND' should be aligned directly beneath DRB4 in the key and 'ND' should be removed from the diagram at right, and the legend should be revised accordingly as follows: "...colors indicate the HLA class II restriction (gray indicates clones for which restriction was not determined (ND)). Clonotypes are grouped on the basis of pathogen selectivity (continuous line), protein specificity (dashed line) and epitope specificity; for ten HlyE-specific clones (pixilated squares), the epitope specificity was not determined...". The errors have been corrected in the HTML and PDF versions of the article.

4.
Nat Immunol ; 19(7): 742-754, 2018 07.
Article in English | MEDLINE | ID: mdl-29925993

ABSTRACT

To tackle the complexity of cross-reactive and pathogen-specific T cell responses against related Salmonella serovars, we used mass cytometry, unbiased single-cell cloning, live fluorescence barcoding, and T cell-receptor sequencing to reconstruct the Salmonella-specific repertoire of circulating effector CD4+ T cells, isolated from volunteers challenged with Salmonella enterica serovar Typhi (S. Typhi) or Salmonella Paratyphi A (S. Paratyphi). We describe the expansion of cross-reactive responses against distantly related Salmonella serovars and of clonotypes recognizing immunodominant antigens uniquely expressed by S. Typhi or S. Paratyphi A. In addition, single-amino acid variations in two immunodominant proteins, CdtB and PhoN, lead to the accumulation of T cells that do not cross-react against the different serovars, thus demonstrating how minor sequence variations in a complex microorganism shape the pathogen-specific T cell repertoire. Our results identify immune-dominant, serovar-specific, and cross-reactive T cell antigens, which should aid in the design of T cell-vaccination strategies against Salmonella.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Salmonella paratyphi A/immunology , Salmonella typhi/immunology , ADP-ribosyl Cyclase 1/analysis , Adult , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , CD4-Positive T-Lymphocytes/chemistry , Clone Cells , Humans , Phenotype , Receptors, CCR7/analysis , Typhoid Fever/immunology
5.
Immunity ; 54(6): 1257-1275.e8, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34051148

ABSTRACT

The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Lymphocyte Activation/immunology , SARS-CoV-2/immunology , Biomarkers , CD8-Positive T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/genetics , Cytokines/metabolism , Disease Susceptibility , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , Longitudinal Studies , Lymphocyte Activation/genetics , Oxidative Phosphorylation , Phenotype , Prognosis , Reactive Oxygen Species/metabolism , Severity of Illness Index , Transcriptome
7.
Nat Immunol ; 17(9): 1046-56, 2016 09.
Article in English | MEDLINE | ID: mdl-27478939

ABSTRACT

Single-nucleotide variations in C13orf31 (LACC1) that encode p.C284R and p.I254V in a protein of unknown function (called 'FAMIN' here) are associated with increased risk for systemic juvenile idiopathic arthritis, leprosy and Crohn's disease. Here we set out to identify the biological mechanism affected by these coding variations. FAMIN formed a complex with fatty acid synthase (FASN) on peroxisomes and promoted flux through de novo lipogenesis to concomitantly drive high levels of fatty-acid oxidation (FAO) and glycolysis and, consequently, ATP regeneration. FAMIN-dependent FAO controlled inflammasome activation, mitochondrial and NADPH-oxidase-dependent production of reactive oxygen species (ROS), and the bactericidal activity of macrophages. As p.I254V and p.C284R resulted in diminished function and loss of function, respectively, FAMIN determined resilience to endotoxin shock. Thus, we have identified a central regulator of the metabolic function and bioenergetic state of macrophages that is under evolutionary selection and determines the risk of inflammatory and infectious disease.


Subject(s)
Arthritis, Juvenile/genetics , Crohn Disease/genetics , Infections/genetics , Leprosy/genetics , Macrophages/immunology , Proteins/genetics , Shock, Septic/genetics , Adenosine Triphosphate/metabolism , Animals , Bacteriolysis , Cells, Cultured , Energy Metabolism , Fatty Acid Synthase, Type I/metabolism , Genetic Predisposition to Disease , Humans , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins , Lipid Metabolism/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidases/metabolism , Oxidation-Reduction , Polymorphism, Single Nucleotide , Risk
8.
Cell ; 154(2): 452-64, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23870131

ABSTRACT

Mutations in whole organisms are powerful ways of interrogating gene function in a realistic context. We describe a program, the Sanger Institute Mouse Genetics Project, that provides a step toward the aim of knocking out all genes and screening each line for a broad range of traits. We found that hitherto unpublished genes were as likely to reveal phenotypes as known genes, suggesting that novel genes represent a rich resource for investigating the molecular basis of disease. We found many unexpected phenotypes detected only because we screened for them, emphasizing the value of screening all mutants for a wide range of traits. Haploinsufficiency and pleiotropy were both surprisingly common. Forty-two percent of genes were essential for viability, and these were less likely to have a paralog and more likely to contribute to a protein complex than other genes. Phenotypic data and more than 900 mutants are openly available for further analysis. PAPERCLIP:


Subject(s)
Genetic Techniques , Mice, Knockout , Phenotype , Animals , Disease/genetics , Disease Models, Animal , Female , Genes, Essential , Genome-Wide Association Study , Male , Mice
9.
PLoS Pathog ; 19(4): e1010650, 2023 04.
Article in English | MEDLINE | ID: mdl-37115804

ABSTRACT

Paratyphoid fever caused by S. Paratyphi A is endemic in parts of South Asia and Southeast Asia. The proportion of enteric fever cases caused by S. Paratyphi A has substantially increased, yet only limited data is available on the population structure and genetic diversity of this serovar. We examined the phylogenetic distribution and evolutionary trajectory of S. Paratyphi A isolates collected as part of the Indian enteric fever surveillance study "Surveillance of Enteric Fever in India (SEFI)." In the study period (2017-2020), S. Paratyphi A comprised 17.6% (441/2503) of total enteric fever cases in India, with the isolates highly susceptible to all the major antibiotics used for treatment except fluoroquinolones. Phylogenetic analysis clustered the global S. Paratyphi A collection into seven lineages (A-G), and the present study isolates were distributed in lineages A, C and F. Our analysis highlights that the genome degradation events and gene acquisitions or losses are key molecular events in the evolution of new S. Paratyphi A lineages/sub-lineages. A total of 10 hypothetically disrupted coding sequences (HDCS) or pseudogenes-forming mutations possibly associated with the emergence of lineages were identified. The pan-genome analysis identified the insertion of P2/PSP3 phage and acquisition of IncX1 plasmid during the selection in 2.3.2/2.3.3 and 1.2.2 genotypes, respectively. We have identified six characteristic missense mutations associated with lipopolysaccharide (LPS) biosynthesis genes of S. Paratyphi A, however, these mutations confer only a low structural impact and possibly have minimal impact on vaccine effectiveness. Since S. Paratyphi A is human-restricted, high levels of genetic drift are not expected unless these bacteria transmit to naive hosts. However, public-health investigation and monitoring by means of genomic surveillance would be constantly needed to avoid S. Paratyphi A serovar becoming a public health threat similar to the S. Typhi of today.


Subject(s)
Typhoid Fever , Humans , Typhoid Fever/microbiology , Salmonella typhi/genetics , Phylogeny , Salmonella paratyphi A/genetics , Anti-Bacterial Agents , Genomics
10.
J Immunol ; 210(5): 547-557, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36637239

ABSTRACT

Prolidase deficiency (PD) is a multisystem disorder caused by mutations in the PEPD gene, which encodes a ubiquitously expressed metallopeptidase essential for the hydrolysis of dipeptides containing C-terminal proline or hydroxyproline. PD typically presents in childhood with developmental delay, skin ulcers, recurrent infections, and, in some patients, autoimmune features that can mimic systemic lupus erythematosus. The basis for the autoimmune association is uncertain, but might be due to self-antigen exposure with tissue damage, or indirectly driven by chronic infection and microbial burden. In this study, we address the question of causation and show that Pepd-null mice have increased antinuclear autoantibodies and raised serum IgA, accompanied by kidney immune complex deposition, consistent with a systemic lupus erythematosus-like disease. These features are associated with an accumulation of CD4 and CD8 effector T cells in the spleen and liver. Pepd deficiency leads to spontaneous T cell activation and proliferation into the effector subset, which is cell intrinsic and independent of Ag receptor specificity or antigenic stimulation. However, an increase in KLRG1+ effector CD8 cells is not observed in mixed chimeras, in which the autoimmune phenotype is also absent. Our findings link autoimmune susceptibility in PD to spontaneous T cell dysfunction, likely to be acting in combination with immune activators that lie outside the hemopoietic system but result from the abnormal metabolism or loss of nonenzymatic prolidase function. This knowledge provides insight into the role of prolidase in the maintenance of self-tolerance and highlights the importance of treatment to control T cell activation.


Subject(s)
Lupus Erythematosus, Systemic , Prolidase Deficiency , Animals , Mice , Autoimmunity , Lymphocyte Activation , Autoantigens
11.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35193958

ABSTRACT

Mycobacterium tuberculosis (Mtb) possesses five type VII secretion systems (T7SS), virulence determinants that include the secretion apparatus and associated secretion substrates. Mtb strains deleted for the genes encoding substrates of the ESX-3 T7SS, esxG or esxH, require iron supplementation for in vitro growth and are highly attenuated in vivo. In a subset of infected mice, suppressor mutants of esxG or esxH deletions were isolated, which enabled growth to high titers or restored virulence. Suppression was conferred by mechanisms that cause overexpression of an ESX-3 paralogous region that lacks genes for the secretion apparatus but encodes EsxR and EsxS, apparent ESX-3 orphan substrates that functionally compensate for the lack of EsxG or EsxH. The mechanisms include the disruption of a transcriptional repressor and a massive 38- to 60-fold gene amplification. These data identify an iron acquisition regulon, provide insight into T7SS, and reveal a mechanism of Mtb chromosome evolution involving "accordion-type" amplification.


Subject(s)
Mycobacterium tuberculosis/genetics , Type VII Secretion Systems/genetics , Animals , Bacterial Secretion Systems/genetics , Biological Evolution , Evolution, Molecular , Gene Amplification/genetics , Mice , Mycobacterium tuberculosis/metabolism , Type VII Secretion Systems/physiology , Virulence , Virulence Factors/genetics
12.
Am J Respir Crit Care Med ; 207(5): 566-576, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36095143

ABSTRACT

Rationale: Obesity affects 40% of U.S. adults, is associated with a proinflammatory state, and presents a significant risk factor for the development of severe coronavirus disease (COVID-19). To date, there is limited information on how obesity might affect immune cell responses in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Objectives: To determine the impact of obesity on respiratory tract immunity in COVID-19 across the human lifespan. Methods: We analyzed single-cell transcriptomes from BAL in three ventilated adult cohorts with (n = 24) or without (n = 9) COVID-19 from nasal immune cells in children with (n = 14) or without (n = 19) COVID-19, and from peripheral blood mononuclear cells in an independent adult COVID-19 cohort (n = 42), comparing obese and nonobese subjects. Measurements and Main Results: Surprisingly, we found that obese adult subjects had attenuated lung immune or inflammatory responses in SARS-CoV-2 infection, with decreased expression of IFN-α, IFN-γ, and TNF-α (tumor necrosis factor α) response gene signatures in almost all lung epithelial and immune cell subsets, and lower expression of IFNG and TNF in specific lung immune cells. Peripheral blood immune cells in an independent adult cohort showed a similar but less marked reduction in type-I IFN and IFNγ response genes, as well as decreased serum IFNα, in obese patients with SARS-CoV-2. Nasal immune cells from obese children with COVID-19 also showed reduced enrichment of IFN-α and IFN-γ response genes. Conclusions: These findings show blunted tissue immune responses in obese patients with COVID-19, with implications for treatment stratification, supporting the specific application of inhaled recombinant type-I IFNs in this vulnerable subset.


Subject(s)
COVID-19 , Interferon Type I , Pediatric Obesity , Adult , Humans , Child , SARS-CoV-2 , Leukocytes, Mononuclear , Lung/pathology
13.
J Infect Dis ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123455

ABSTRACT

OBJECTIVES: In Santiago, Chile, where typhoid had been hyperendemic (1977-1991), we investigated whether residual chronic carriers could be detected among household contacts of non-travel-related typhoid cases occurring 2017-2019. METHODS: Culture-confirmed cases were classified as "autochthonous" (domestically-acquired) versus "travel/immigration-related". Household contacts of cases had stool cultures and serum Vi antibody measurements to detect chronic Salmonella Typhi carriers. Whole genome sequences of acute cases and their epidemiologically-linked chronic carrier isolates were compared. RESULTS: Five of 16 autochthonous typhoid cases (31.3%) were linked to four chronic carriers in case households; two cases (onsets 23 months apart) were linked to the same carrier. Carriers were women aged 69-79 years with gallbladder dysfunction and Typhi fecal excretion; three had highly elevated serum anti-Vi titers. Genomic analyses revealed close identity (≤11 core genome SNP [Single Nucleotide Polymorphism] differences) between case and epidemiologically-linked carrier isolates; all were genotypes prevalent in 1980s Santiago. A cluster of four additional autochthonous cases un-linked to a carrier was identified based on genomic identity (0-1 SNPs). Travel/immigration isolate genotypes were typical for the countries of travel/immigration. CONCLUSIONS: Although autochthonous typhoid cases in Santiago are currently rare, 5/16 such cases (31.3%) were linked to elderly chronic carriers identified among household contacts of cases.

14.
Clin Infect Dis ; 77(Suppl 7): S597-S607, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38118013

ABSTRACT

Antimicrobial resistance (AMR) poses an immediate danger to global health. If unaddressed, the current upsurge in AMR threatens to reverse the achievements in reducing the infectious disease-associated mortality and morbidity associated with antimicrobial treatment. Consequently, there is an urgent need for strategies to prevent or slow the progress of AMR. Vaccines potentially contribute both directly and indirectly to combating AMR. Modeling studies have indicated significant gains from vaccination in reducing AMR burdens for specific pathogens, reducing mortality/morbidity, and economic loss. However, quantifying the real impact of vaccines in these reductions is challenging because many of the study designs used to evaluate the contribution of vaccination programs are affected by significant background confounding, and potential selection and information bias. Here, we discuss challenges in assessing vaccine impact to reduce AMR burdens and suggest potential approaches for vaccine impact evaluation nested in vaccine trials.


Subject(s)
Anti-Bacterial Agents , Vaccines , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Vaccination , Global Health
15.
Clin Infect Dis ; 75(1): e97-e101, 2022 08 24.
Article in English | MEDLINE | ID: mdl-34718446

ABSTRACT

Airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was detected in a coronavirus disease 19 (COVID-19) ward before activation of HEPA-air filtration but not during filter operation; SARS-CoV-2 was again detected following filter deactivation. Airborne SARS-CoV-2 was infrequently detected in a COVID-19 intensive care unit. Bioaerosol was also effectively filtered.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals , Humans
16.
PLoS Pathog ; 16(10): e1008998, 2020 10.
Article in English | MEDLINE | ID: mdl-33085725

ABSTRACT

Despite recent advances in typhoid fever control, asymptomatic carriage of Salmonella Typhi in the gallbladder remains poorly understood. Aiming to understand if S. Typhi becomes genetically adapted for long-term colonisation in the gallbladder, we performed whole genome sequencing on a collection of S. Typhi isolated from the gallbladders of typhoid carriers. These sequences were compared to contemporaneously sampled sequences from organisms isolated from the blood of acute patients within the same population. We found that S. Typhi carriage was not restricted to any particular genotype or conformation of antimicrobial resistance genes, but was largely reflective of S. Typhi circulating in the general population. However, gallbladder isolates showed a higher genetic variability than acute isolates, with median pairwise SNP distances of 21 and 13 SNPs (p = 2.8x10-9), respectively. Within gallbladder isolates of the predominant H58 genotype, variation was associated with a higher prevalence of nonsense mutations. Notably, gallbladder isolates displayed a higher frequency of non-synonymous mutations in genes encoding hypothetical proteins, membrane lipoproteins, transport/binding proteins, surface antigens, and carbohydrate degradation. Specifically, we identified several gallbladder-specific non-synonymous mutations involved in LPS synthesis and modification, with some isolates lacking the Vi capsular polysaccharide vaccine target due to the 134Kb deletion of SPI-7. S. Typhi is under strong selective pressure in the human gallbladder, which may be reflected phylogenetically by long terminal branches that may distinguish organisms from chronic and acute infections. Our work shows that selective pressures asserted by the hostile environment of the human gallbladder generate new antigenic variants and raises questions regarding the role of carriage in the epidemiology of typhoid fever.


Subject(s)
Gallbladder/microbiology , Salmonella typhi/genetics , Typhoid Fever/genetics , Adaptation, Biological , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Female , Genetic Variation/genetics , Genotype , Humans , Male , Middle Aged , Mutation , Phylogeny , Salmonella typhi/pathogenicity , Typhoid Fever/microbiology , Whole Genome Sequencing/methods
18.
Nature ; 539(7627): 102-106, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27749818

ABSTRACT

Innate lymphoid cells (ILCs) functionally resemble T lymphocytes in cytotoxicity and cytokine production but lack antigen-specific receptors, and they are important regulators of immune responses and tissue homeostasis. ILCs are generated from common lymphoid progenitors, which are subsequently committed to innate lymphoid lineages in the α-lymphoid progenitor, early innate lymphoid progenitor, common helper innate lymphoid progenitor and innate lymphoid cell progenitor compartments. ILCs consist of conventional natural killer cells and helper-like cells (ILC1, ILC2 and ILC3). Despite recent advances, the cellular heterogeneity, developmental trajectory and signalling dependence of ILC progenitors are not fully understood. Here, using single-cell RNA-sequencing (scRNA-seq) of mouse bone marrow progenitors, we reveal ILC precursor subsets, delineate distinct ILC development stages and pathways, and report that high expression of programmed death 1 (PD-1hi) marked a committed ILC progenitor that was essentially identical to an innate lymphoid cell progenitor. Our data defined PD-1hiIL-25Rhi as an early checkpoint in ILC2 development, which was abolished by deficiency in the zinc-finger protein Bcl11b but restored by IL-25R overexpression. Similar to T lymphocytes, PD-1 was upregulated on activated ILCs. Administration of a PD-1 antibody depleted PD-1hi ILCs and reduced cytokine levels in an influenza infection model in mice, and blocked papain-induced acute lung inflammation. These results provide a perspective for exploring PD-1 and its ligand (PD-L1) in immunotherapy, and allow effective manipulation of the immune system for disease prevention and therapy.


Subject(s)
Base Sequence , Cell Lineage , Immunity, Innate , Lymphocytes/cytology , Lymphoid Progenitor Cells/cytology , Programmed Cell Death 1 Receptor/metabolism , Single-Cell Analysis , Animals , Antibodies/immunology , Cell Differentiation , Cell Lineage/genetics , Cell Separation , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Humans , Immunotherapy/trends , Influenza, Human/immunology , Influenza, Human/metabolism , Killer Cells, Natural/cytology , Lymphocyte Activation , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphoid Progenitor Cells/metabolism , Mice , Mice, Inbred C57BL , Pneumonia/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Receptors, Interleukin/metabolism , Repressor Proteins/deficiency , Repressor Proteins/metabolism , T-Lymphocytes/metabolism , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/metabolism
19.
Proc Natl Acad Sci U S A ; 116(6): 2265-2273, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30659146

ABSTRACT

The genus Legionella comprises 65 species, among which Legionella pneumophila is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 Legionella genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encoding 137 different eukaryotic-like domains and over 200 eukaryotic-like proteins is paired with a highly conserved type IV secretion system (T4SS). Specifically, we show that eukaryotic Rho- and Rab-GTPase domains are found nearly exclusively in eukaryotes and Legionella Translocation assays for selected Rab-GTPase proteins revealed that they are indeed T4SS secreted substrates. Furthermore, F-box, U-box, and SET domains were present in >70% of all species, suggesting that manipulation of host signal transduction, protein turnover, and chromatin modification pathways are fundamental intracellular replication strategies for legionellae. In contrast, the Sec-7 domain was restricted to L. pneumophila and seven other species, indicating effector repertoire tailoring within different amoebae. Functional screening of 47 species revealed 60% were competent for intracellular replication in THP-1 cells, but interestingly, this phenotype was associated with diverse effector assemblages. These data, combined with evolutionary analysis, indicate that the capacity to infect eukaryotic cells has been acquired independently many times within the genus and that a highly conserved yet versatile T4SS secretes an exceptional number of different proteins shaped by interdomain gene transfer. Furthermore, we revealed the surprising extent to which legionellae have coopted genes and thus cellular functions from their eukaryotic hosts, providing an understanding of how dynamic reshuffling and gene acquisition have led to the emergence of major human pathogens.


Subject(s)
Genome, Bacterial , Legionella/physiology , Legionellosis/microbiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Secretion Systems/genetics , Computational Biology/methods , Evolution, Molecular , Genomics/methods , Humans , Intracellular Space/microbiology , Legionella/classification , Phylogeny , Protein Domains
20.
J Virol ; 94(9)2020 04 16.
Article in English | MEDLINE | ID: mdl-32075938

ABSTRACT

Recognition of influenza A virus (IAV) by the innate immune system triggers pathways that restrict viral replication, activate innate immune cells, and regulate adaptive immunity. However, excessive innate immune activation can exaggerate disease. The pathways promoting excessive activation are incompletely understood, with limited experimental models to investigate the mechanisms driving influenza virus-induced inflammation in humans. Interferon regulatory factor 5 (IRF5) is a transcription factor that plays important roles in the induction of cytokines after viral sensing. In an in vivo model of IAV infection, IRF5 deficiency reduced IAV-driven immune pathology and associated inflammatory cytokine production, specifically reducing cytokine-producing myeloid cell populations in Irf5-/- mice but not impacting type 1 interferon (IFN) production or virus replication. Using cytometry by time of flight (CyTOF), we identified that human lung IRF5 expression was highest in cells of the myeloid lineage. To investigate the role of IRF5 in mediating human inflammatory responses by myeloid cells to IAV, we employed human-induced pluripotent stem cells (hIPSCs) with biallelic mutations in IRF5, demonstrating for the first time that induced pluripotent stem cell-derived dendritic cells (iPS-DCs) with biallelic mutations can be used to investigate the regulation of human virus-induced immune responses. Using this technology, we reveal that IRF5 deficiency in human DCs, or macrophages, corresponded with reduced virus-induced inflammatory cytokine production, with IRF5 acting downstream of Toll-like receptor 7 (TLR7) and, possibly, retinoic acid-inducible gene I (RIG-I) after viral sensing. Thus, IRF5 acts as a regulator of myeloid cell inflammatory cytokine production during IAV infection in mice and humans and drives immune-mediated viral pathogenesis independently of type 1 IFN and virus replication.IMPORTANCE The inflammatory response to influenza A virus (IAV) participates in infection control but contributes to disease severity. After viral detection, intracellular pathways are activated, initiating cytokine production, but these pathways are incompletely understood. We show that interferon regulatory factor 5 (IRF5) mediates IAV-induced inflammation and, in mice, drives pathology. This was independent of antiviral type 1 IFN and virus replication, implying that IRF5 could be specifically targeted to treat influenza virus-induced inflammation. We show for the first time that human iPSC technology can be exploited in genetic studies of virus-induced immune responses. Using this technology, we deleted IRF5 in human myeloid cells. These IRF5-deficient cells exhibited impaired influenza virus-induced cytokine production and revealed that IRF5 acts downstream of Toll-like receptor 7 and possibly retinoic acid-inducible gene I. Our data demonstrate the importance of IRF5 in influenza virus-induced inflammation, suggesting that genetic variation in the IRF5 gene may influence host susceptibility to viral diseases.


Subject(s)
Induced Pluripotent Stem Cells/immunology , Influenza A virus/immunology , Interferon Regulatory Factors/metabolism , Adaptive Immunity/physiology , Animals , Disease Models, Animal , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/physiology , Influenza A virus/metabolism , Influenza A virus/physiology , Influenza, Human/immunology , Interferon Regulatory Factors/immunology , Interferon Type I/metabolism , Lung/virology , Macrophages/virology , Mice , Orthomyxoviridae Infections/virology , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL