Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
J Biol Chem ; 298(11): 102497, 2022 11.
Article in English | MEDLINE | ID: mdl-36115460

ABSTRACT

Pentacyclic triterpenoids, including ursolic acid (UA), are bioactive compounds with multiple biological activities involving anti-inflammatory effects. However, the mode of their action on mast cells, key players in the early stages of allergic inflammation, and underlying molecular mechanisms remain enigmatic. To better understand the effect of UA on mast cell signaling, here we examined the consequences of short-term treatment of mouse bone marrow-derived mast cells with UA. Using IgE-sensitized and antigen- or thapsigargin-activated cells, we found that 15 min exposure to UA inhibited high affinity IgE receptor (FcεRI)-mediated degranulation, calcium response, and extracellular calcium uptake. We also found that UA inhibited migration of mouse bone marrow-derived mast cells toward antigen but not toward prostaglandin E2 and stem cell factor. Compared to control antigen-activated cells, UA enhanced the production of tumor necrosis factor-α at the mRNA and protein levels. However, secretion of this cytokine was inhibited. Further analysis showed that UA enhanced tyrosine phosphorylation of the SYK kinase and several other proteins involved in the early stages of FcεRI signaling, even in the absence of antigen activation, but inhibited or reduced their further phosphorylation at later stages. In addition, we show that UA induced changes in the properties of detergent-resistant plasma membrane microdomains and reduced antibody-mediated clustering of the FcεRI and glycosylphosphatidylinositol-anchored protein Thy-1. Finally, UA inhibited mobility of the FcεRI and cholesterol. These combined data suggest that UA exerts its effects, at least in part, via lipid-centric plasma membrane perturbations, hence affecting the functions of the FcεRI signalosome.


Subject(s)
Receptors, IgE , Triterpenes , Mice , Animals , Receptors, IgE/metabolism , Mast Cells/metabolism , Cell Degranulation , Calcium/metabolism , Triterpenes/pharmacology , Triterpenes/metabolism , Antigens/metabolism , Lipids/pharmacology , Ursolic Acid
2.
Int J Mol Sci ; 25(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38203527

ABSTRACT

Due to their unique three-dimensional structure, DNA or RNA oligonucleotide aptamers bind to various molecules with high affinity and specificity. Aptamers, alone or in combination with antibodies, can be used to sensitively quantify target molecules by quantitative real-time polymerase chain reaction (qPCR). However, the assays are often complicated and unreliable. In this study, we explored the feasibility of performing the entire assay on wells of routinely used polypropylene PCR plates. We found that polypropylene wells efficiently bind proteins. This allows the entire assay to be run in a single well. To minimize nonspecific binding of the assay components to the polypropylene wells, we tested various blocking agents and identified methylcellulose as an effective alternative to the commonly used BSA. Methylcellulose not only demonstrates comparable or superior blocking capabilities but also offers the advantage of a well-defined composition and non-animal origin. Our findings support the utilization of aptamers, either alone or in combination with antibodies, for sensitive quantification of selected molecules immobilized in polypropylene PCR wells in a streamlined one-well qPCR assay under well-defined conditions.


Subject(s)
Aptamers, Nucleotide , Polypropylenes , Antibodies , Methylcellulose , Real-Time Polymerase Chain Reaction
3.
Immunol Rev ; 282(1): 73-86, 2018 03.
Article in English | MEDLINE | ID: mdl-29431203

ABSTRACT

Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E2 , sphingosine-1-phosphate, and ß-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines.


Subject(s)
Cell Degranulation , Hypersensitivity/immunology , Mast Cells/immunology , Receptors, G-Protein-Coupled/metabolism , Receptors, IgE/metabolism , Toll-Like Receptors/metabolism , Chemokines/metabolism , Cytokines/metabolism , Immunization , Immunoglobulin E/metabolism , Inflammation Mediators/metabolism , Signal Transduction
4.
J Lipid Res ; 62: 100121, 2021.
Article in English | MEDLINE | ID: mdl-34560079

ABSTRACT

Leukotrienes (LTs) and sphingolipids are critical lipid mediators participating in numerous cellular signal transduction events and developing various disorders, such as bronchial hyperactivity leading to asthma. Enzymatic reactions initiating production of these lipid mediators involve 5-lipoxygenase (5-LO)-mediated conversion of arachidonic acid to LTs and serine palmitoyltransferase (SPT)-mediated de novo synthesis of sphingolipids. Previous studies have shown that endoplasmic reticulum membrane protein ORM1-like protein 3 (ORMDL3) inhibits the activity of SPT and subsequent sphingolipid synthesis. However, the role of ORMDL3 in the synthesis of LTs is not known. In this study, we used peritoneal-derived mast cells isolated from ORMDL3 KO or control mice and examined their calcium mobilization, degranulation, NF-κB inhibitor-α phosphorylation, and TNF-α production. We found that peritoneal-derived mast cells with ORMDL3 KO exhibited increased responsiveness to antigen. Detailed lipid analysis showed that compared with WT cells, ORMDL3-deficient cells exhibited not only enhanced production of sphingolipids but also of LT signaling mediators LTB4, 6t-LTB4, LTC4, LTB5, and 6t-LTB5. The crosstalk between ORMDL3 and 5-LO metabolic pathways was supported by the finding that endogenous ORMDL3 and 5-LO are localized in similar endoplasmic reticulum domains in human mast cells and that ORMDL3 physically interacts with 5-LO. Further experiments showed that 5-LO also interacts with the long-chain 1 and long-chain 2 subunits of SPT. In agreement with these findings, 5-LO knockdown increased ceramide levels, and silencing of SPTLC1 decreased arachidonic acid metabolism to LTs to levels observed upon 5-LO knockdown. These results demonstrate functional crosstalk between the LT and sphingolipid metabolic pathways, leading to the production of lipid signaling mediators.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Eicosanoids/metabolism , Membrane Proteins/metabolism , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/metabolism , Animals , Eicosanoids/analysis , Mice , Mice, Inbred C57BL , Mice, Knockout , Sphingolipids/analysis
5.
Anal Biochem ; 589: 113502, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31704088

ABSTRACT

Nucleic acid aptamers are single-stranded (ss)DNA or RNA oligonucleotides that can take various conformations and bind specifically and with high affinity to selected targets. While the introduction of SELEX (systematic evolution of ligands by exponential enrichment) revolutionized the production of the aptamers, this procedure is impeded by the formation of undesirable by-products reflecting hybridization among complementary oligonucleotides in the ssDNA libraries during asymmetric PCR. To reduce nonspecific amplification we tested cellulose-derived compounds and found that sodium carboxymethylcellulose (CMC) at a concentration 0.05%-0.2% efficiently suppressed production of undesirable large DNA amplicons during asymmetric PCR in the course of SELEX. Formation of the PCR by-products was reduced by CMCs of low and medium viscosity more than by CMCs of high viscosity, and all of them bound to DNA oligonucleotides as determined by electrophoresis in agarose gels. In contrast to CMC, methylcellulose did not reduce the formation of the PCR by-products and did not bind to DNA. DNA aptamers selected in the presence of CMC could be used directly in enzyme-linked immunosorbent-like assay. The combined data suggest that CMC binds weekly to DNA oligonucleotides through hydroxyl groups and in this way inhibits low-affinity DNA-DNA hybridization and enhances the production of specific amplicons in asymmetric PCR.


Subject(s)
Aptamers, Nucleotide/chemistry , Carboxymethylcellulose Sodium/chemistry , DNA, Single-Stranded/chemistry , SELEX Aptamer Technique/methods , Enzyme-Linked Immunosorbent Assay/methods , Methylcellulose/chemistry , Polymerase Chain Reaction/methods
6.
Trends Immunol ; 38(9): 657-667, 2017 09.
Article in English | MEDLINE | ID: mdl-28254170

ABSTRACT

Mast cells are powerful immune modulators of the tissue microenvironment. Within seconds of activation, these cells release a variety of preformed biologically active products, followed by a wave of mediator synthesis and secretion. Increasing evidence suggests that an intricate network of inhibitory and activating receptors, specific signaling pathways, and adaptor proteins governs mast cell responsiveness to stimuli. Here, we discuss the biological and clinical relevance of negative and positive signaling modalities that control mast cell activation, with an emphasis on novel FcεRI regulators, immunoglobulin E (IgE)-independent pathways [e.g., Mas-related G protein-coupled receptor X2 (MRGPRX2)], tetraspanins, and the CD300 family of inhibitory and activating receptors.


Subject(s)
Cell Degranulation , Mast Cells/immunology , Nerve Tissue Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Signal Transduction , Animals , Antimicrobial Cationic Peptides/metabolism , Ganglia, Spinal/metabolism , Humans , Immunomodulation , Ki-1 Antigen/metabolism , Neuropeptides/metabolism , Receptors, IgE/metabolism , Tetraspanins/metabolism
7.
Med Microbiol Immunol ; 209(4): 531-543, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32507938

ABSTRACT

Mast cells (MCs) are long-living immune cells highly specialized in the storage and release of different biologically active compounds and are involved in the regulation of innate and adaptive immunity. MC degranulation and replacement of MC granules are accompanied by active membrane remodelling. Tetraspanins represent an evolutionary conserved family of transmembrane proteins. By interacting with lipids and other membrane and intracellular proteins, they are involved in organisation of membrane protein complexes and act as "molecular facilitators" connecting extracellular and cytoplasmic signaling elements. MCs express different tetraspanins and MC degranulation is accompanied by changes in membrane organisation. Therefore, tetraspanins are very likely involved in the regulation of MC exocytosis and membrane reorganisation after degranulation. Antiviral response and production of exosomes are further aspects of MC function characterized by dynamic changes of membrane organization. In this review, we pay a particular attention to tetraspanin gene expression in different human and murine MC populations, discuss tetraspanin involvement in regulation of key MC signaling complexes, and analyze the potential contribution of tetraspanins to MC antiviral response and exosome production. In-depth knowledge of tetraspanin-mediated molecular mechanisms involved in different aspects of the regulation of MC response will be beneficial for patients with allergies, characterized by overwhelming MC reactions.


Subject(s)
Mast Cells/immunology , Mast Cells/metabolism , Tetraspanins/immunology , Tetraspanins/metabolism , Animals , Cell Degranulation , Exosomes/metabolism , Humans , Mice , Signal Transduction , Tetraspanins/genetics , Virus Diseases/immunology
8.
Cell Mol Life Sci ; 73(6): 1265-85, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26407610

ABSTRACT

Single-nucleotide polymorphism studies have linked the chromosome 17q12-q21 region, where the human orosomucoid-like (ORMDL)3 gene is localized, to the risk of asthma and several other inflammatory diseases. Although mast cells are involved in the development of these diseases, the contribution of ORMDL3 to the mast cell physiology is unknown. In this study, we examined the role of ORMDL3 in antigen-induced activation of murine mast cells with reduced or enhanced ORMDL3 expression. Our data show that in antigen-activated mast cells, reduced expression of the ORMDL3 protein had no effect on degranulation and calcium response, but significantly enhanced phosphorylation of AKT kinase at Ser 473 followed by enhanced phosphorylation and degradation of IκBα and translocation of the NF-κB p65 subunit into the nucleus. These events were associated with an increased expression of proinflammatory cytokines (TNF-α, IL-6, and IL-13), chemokines (CCL3 and CCL4), and cyclooxygenase-2 dependent synthesis of prostaglandin D2. Antigen-mediated chemotaxis was also enhanced in ORMDL3-deficient cells, whereas spreading on fibronectin was decreased. On the other hand, increased expression of ORMDL3 had no significant effect on the studied signaling events, except for reduced antigen-mediated chemotaxis. These data were corroborated by increased IgE-antigen-dependent passive cutaneous anaphylaxis in mice with locally silenced ORMDL3 using short interfering RNAs. Our data also show that antigen triggers suppression of ORMDL3 expression in the mast cells. In summary, we provide evidence that downregulation of ORMDL3 expression in mast cells enhances AKT and NF-κB-directed signaling pathways and chemotaxis and contributes to the development of mast cell-mediated local inflammation in vivo.


Subject(s)
Cell Degranulation , Chemotaxis , Mast Cells/immunology , Membrane Proteins/immunology , Receptors, IgE/immunology , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/immunology , Down-Regulation , Mast Cells/cytology , Mast Cells/metabolism , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , RNA, Messenger/genetics , Up-Regulation
9.
J Allergy Clin Immunol ; 134(3): 530-44, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24767877

ABSTRACT

Mast cells and basophils (MCs/Bs) play a crucial role in type I allergy, as well as in innate and adaptive immune responses. These cells mediate their actions through soluble mediators, some of which are targeted therapeutically by, for example, H1- and H2-antihistamines or cysteinyl leukotriene receptor antagonists. Recently, considerable progress has been made in developing new drugs that target additional MC/B mediators or receptors, such as serine proteinases, histamine 4-receptor, 5-lipoxygenase-activating protein, 15-lipoxygenase-1, prostaglandin D2, and proinflammatory cytokines. Mediator production can be abrogated by the use of inhibitors directed against key intracellular enzymes, some of which have been used in clinical trials (eg, inhibitors of spleen tyrosine kinase, phosphatidylinositol 3-kinase, Bruton tyrosine kinase, and the protein tyrosine kinase KIT). Reduced MC/B function can also be achieved by enhancing Src homology 2 domain-containing inositol 5' phosphatase 1 activity or by blocking sphingosine-1-phosphate. Therapeutic interventions in mast cell-associated diseases potentially include drugs that either block ion channels and adhesion molecules or antagonize antiapoptotic effects on B-cell lymphoma 2 family members. MCs/Bs express high-affinity IgE receptors, and blocking their interactions with IgE has been a prime goal in antiallergic therapy. Surface-activating receptors, such as CD48 and thymic stromal lymphopoietin receptors, as well as inhibitory receptors, such as CD300a, FcγRIIb, and endocannabinoid receptors, hold promising therapeutic possibilities based on preclinical studies. The inhibition of activating receptors might help prevent allergic reactions from developing, although most of the candidate drugs are not sufficiently cell specific. In this review recent advances in the development of novel therapeutics toward different molecules of MCs/Bs are presented.


Subject(s)
Anti-Allergic Agents/therapeutic use , Basophils/immunology , Hypersensitivity/therapy , Immunotherapy/methods , Mast Cells/immunology , Animals , Anti-Allergic Agents/pharmacology , Apoptosis/drug effects , Cell Adhesion Molecules/antagonists & inhibitors , Cell Degranulation/drug effects , Humans , Hypersensitivity/immunology , Immunotherapy/trends , Ion Channels/antagonists & inhibitors , Molecular Targeted Therapy , Receptors, Cannabinoid/metabolism , Receptors, IgE/antagonists & inhibitors
10.
J Biol Chem ; 288(14): 9801-9814, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-23443658

ABSTRACT

Chemotaxis, a process leading to movement of cells toward increasing concentrations of chemoattractants, is essential, among others, for recruitment of mast cells within target tissues where they play an important role in innate and adaptive immunity. Chemotaxis is driven by chemoattractants, produced by various cell types, as well as by intrinsic cellular regulators, which are poorly understood. In this study we prepared a new mAb specific for the tetraspanin CD9. Binding of the antibody to bone marrow-derived mast cells triggered activation events that included cell degranulation, Ca(2+) response, dephosphorylation of ezrin/radixin/moesin (ERM) family proteins, and potent tyrosine phosphorylation of the non-T cell activation linker (NTAL) but only weak phosphorylation of the linker for activation of T cells (LAT). Phosphorylation of the NTAL was observed with whole antibody but not with its F(ab)(2) or Fab fragments. This indicated involvement of the Fcγ receptors. As documented by electron microscopy of isolated plasma membrane sheets, CD9 colocalized with the high-affinity IgE receptor (FcεRI) and NTAL but not with LAT. Further tests showed that both anti-CD9 antibody and its F(ab)(2) fragment inhibited mast cell chemotaxis toward antigen. Experiments with bone marrow-derived mast cells deficient in NTAL and/or LAT revealed different roles of these two adaptors in antigen-driven chemotaxis. The combined data indicate that chemotaxis toward antigen is controlled in mast cells by a cross-talk among FcεRI, tetraspanin CD9, transmembrane adaptor proteins NTAL and LAT, and cytoskeleton-regulatory proteins of the ERM family.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Transport System y+/metabolism , Fusion Regulatory Protein 1, Light Chains/metabolism , Mast Cells/cytology , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Receptors, IgE/metabolism , Tetraspanin 29/physiology , Animals , Antigens/metabolism , Calcium/metabolism , Cell Membrane/metabolism , Chemotaxis , Cytoskeleton/metabolism , Glucuronidase/metabolism , Immunoglobulin Fab Fragments/chemistry , Mice , Mice, Inbred C57BL , Models, Biological , Phosphorylation , Protein Binding , Rats , Rats, Wistar , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL