ABSTRACT
Glioblastoma (GBM) is the most common malignant tumor in the brain with temozolomide (TMZ) as the only approved chemotherapy agent. GBM is characterized by susceptibility to radiation and chemotherapy resistance and recurrence as well as low immunological response. There is an urgent need for new therapy to improve the outcome of GBM patients. We previously reported that 3-O-acetyl-11-keto-ß-boswellic acid (AKBA) inhibited the growth of GBM. In this study we characterized the anti-GBM effect of S670, a synthesized amide derivative of AKBA, and investigated the underlying mechanisms. We showed that S670 dose-dependently inhibited the proliferation of human GBM cell lines U87 and U251 with IC50 values of around 6 µM. Furthermore, we found that S670 (6 µM) markedly stimulated mitochondrial ROS generation and induced ferroptosis in the GBM cells. Moreover, S670 treatment induced ROS-mediated Nrf2 activation and TFEB nuclear translocation, promoting protective autophagosome and lysosome biogenesis in the GBM cells. On the other hand, S670 treatment significantly inhibited the expression of SXT17, thus impairing autophagosome-lysosome fusion and blocking autophagy flux, which exacerbated ROS accumulation and enhanced ferroptosis in the GBM cells. Administration of S670 (50 mg·kg-1·d-1, i.g.) for 12 days in a U87 mouse xenograft model significantly inhibited tumor growth with reduced Ki67 expression and increased LC3 and LAMP2 expression in the tumor tissues. Taken together, S670 induces ferroptosis by generating ROS and inhibiting STX17-mediated fusion of autophagosome and lysosome in GBM cells. S670 could serve as a drug candidate for the treatment of GBM.
Subject(s)
Brain Neoplasms , Ferroptosis , Glioblastoma , Humans , Animals , Mice , Glioblastoma/drug therapy , Glioblastoma/metabolism , Reactive Oxygen Species/metabolism , Autophagosomes/metabolism , Amides/pharmacology , Signal Transduction , Lysosomes/metabolism , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Qa-SNARE ProteinsABSTRACT
Dopaminergic neurons in the substantia nigra (SN) expressing SUR1/Kir6.2 type ATP-sensitive potassium channels (K-ATP) are more vulnerable to rotenone or metabolic stress, which may be an important reason for the selective degeneration of neurons in Parkinson's disease (PD). Baicalein has shown neuroprotective effects in PD animal models. In this study, we investigated the effect of baicalein on K-ATP channels and the underlying mechanisms in rotenone-induced apoptosis of SH-SY5Y cells. K-ATP currents were recorded from SH-SY5Y cells using whole-cell voltage-clamp recording. Drugs dissolved in the external solution at the final concentration were directly pipetted onto the cells. We showed that rotenone and baicalein opened K-ATP channels and increased the current amplitudes with EC50 values of 0.438 µM and 6.159 µM, respectively. K-ATP channel blockers glibenclamide (50 µM) or 5-hydroxydecanoate (5-HD, 250 µM) attenuated the protective effects of baicalein in reducing reactive oxygen species (ROS) content and increasing mitochondrial membrane potential and ATP levels in rotenone-injured SH-SY5Y cells, suggesting that baicalein protected against the apoptosis of SH-SY5Y cells by regulating the effect of rotenone on opening K-ATP channels. Administration of baicalein (150, 300 mg·kg-1·d-1, i.g.) significantly inhibited rotenone-induced overexpression of SUR1 in SN and striatum of rats. We conducted surface plasmon resonance assay and molecular docking, and found that baicalein had a higher affinity with SUR1 protein (KD = 10.39 µM) than glibenclamide (KD = 24.32 µM), thus reducing the sensitivity of K-ATP channels to rotenone. Knockdown of SUR1 subunit reduced rotenone-induced apoptosis and damage of SH-SY5Y cells, confirming that SUR1 was an important target for slowing dopaminergic neuronal degeneration in PD. Taken together, we demonstrate for the first time that baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating K-ATP channels.
Subject(s)
Flavanones , Neuroblastoma , Potassium Channels, Inwardly Rectifying , Humans , Rats , Animals , KATP Channels , Rotenone/pharmacology , Sulfonylurea Receptors , Potassium Channels, Inwardly Rectifying/metabolism , Glyburide/pharmacology , Molecular Docking Simulation , Apoptosis , Dopaminergic Neurons/metabolism , Adenosine Triphosphate/pharmacologyABSTRACT
Glioblastoma represents the predominant and a highly aggressive primary neoplasm of the central nervous system that has an abnormal metabolism. Our previous study showed that chrysomycin A (Chr-A) curbed glioblastoma progression in vitro and in vivo. However, whether Chr-A could inhibit orthotopic glioblastoma and how it reshapes metabolism are still unclear. In this study, Chr-A markedly suppressed the development of intracranial U87 gliomas. The results from airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) indicated that Chr-A improved the abnormal metabolism of mice with glioblastoma. Key enzymes including glutaminase (GLS), glutamate dehydrogenases 1 (GDH1), hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD) were regulated by Chr-A. Chr-A further altered the level of nicotinamide adenine dinucleotide phosphate (NADPH), thus causing oxidative stress with the downregulation of Nrf-2 to inhibit glioblastoma. Our study offers a novel perspective for comprehending the anti-glioma mechanism of Chr-A, highlighting its potential as a promising chemotherapeutic agent for glioblastoma.
Subject(s)
Brain Neoplasms , Glioblastoma , Oxidative Stress , Glioblastoma/drug therapy , Glioblastoma/metabolism , Oxidative Stress/drug effects , Animals , Humans , Mice , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Glucosephosphate Dehydrogenase/metabolism , Anthraquinones/pharmacology , Glutaminase/metabolism , NF-E2-Related Factor 2/metabolism , Disease Progression , Glutamate Dehydrogenase/metabolism , NADP/metabolism , Xenograft Model Antitumor Assays , Male , Mice, NudeABSTRACT
Glioblastoma (GBM) is the most common, malignant, and lethal primary brain tumor in adults. Up to now, the chemotherapy approaches for GBM are limited. Therefore, more studies on identifying and exploring new chemotherapy drugs or strategies overcome the GBM are essential. Natural products are an important source of drugs against various human diseases including cancers. With the better understanding of the molecular etiology of GBM, the development of new anti-GBM drugs has been increasing. Here, we summarized recent researches of natural products for the GBM therapy and their potential mechanisms in details, which will provide new ideas for the research on natural products and promote developing drugs from nature products for GBM therapy.
Subject(s)
Biological Products , Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Biological Products/pharmacology , Biological Products/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathologyABSTRACT
BACKGROUND: Fibroblast growth factors (FGFs) are key factors affecting diabetic wound healing. However, the FGF family's expression patterns in skin and wounds influenced by both diabetes and sex are still unknown. METHODS AND RESULTS: In this study, normal and Streptozotocin (STZ)-induced type 1 diabetic C57BL/6J male and female mice were used to study the FGF family's expression in non-wound skin and wounds. We found that the expression patterns of Fgfs were affected by sex in both normal and diabetic animals during wound healing. In normal control mice, sex difference had a limited effect on basal skin Fgf expressions. However, it significantly influenced Fgf expressions in wounds. Type 1 diabetes reduced basal and wound-induced skin Fgf expressions. Female mice had far lower wound-induced skin Fgf expressions in diabetic mice. In addition, sex differently influenced Fibroblast growth factors receptor (Fgfr) expression patterns of non-wound skin and wounds in both normal and diabetic mice. Moreover, female mice had a lower relative level of Fibronectin leucine-rich repeat transmembrane protein 2 (FLRT2) - a FGFR activation marker gene - in wound and blood plasma. Correspondingly, the wound areas of female animals were larger than that of male animals in the early stage of wound healing (less than 3-day injury). CONCLUSION: Our research shows that the FGF family have different expression patterns in normal and diabetic wound healing in mice of different sex. Additionally, we also provide the signatures of individual FGFs in diabetic wound healing, which deserve further investigation.
Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Mice , Female , Male , Animals , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Streptozocin/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Sex Characteristics , Mice, Inbred C57BL , Skin/metabolism , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Membrane Glycoproteins/metabolismABSTRACT
Glioblastoma (GBM) is a major type of primary brain tumor without ideal prognosis and it is therefore necessary to develop a novel compound possessing therapeutic effects. Chrysomycin A (Chr-A) has been reported to inhibit the proliferation, migration and invasion of U251 and U87-MG cells through the Akt/GSK-3ß signaling pathway, but the mechanism of Chr-A against glioblastoma in vivo and whether Chr-A modulates the apoptosis of neuroglioma cells is unclear. The present study aims to elucidate the potential of Chr-A against glioblastoma in vivo and how Chr-A modulates the apoptosis of neuroglioma cells. Briefly, the anti-glioblastoma activity was assessed in human glioma U87 xenografted hairless mice. Chr-A-related targets were identified via RNA-sequencing. Apoptotic ratio and caspase 3/7 activity of U251 and U87-MG cells were assayed via flow cytometry. Apoptosis-related proteins and possible molecular mechanisms were validated via Western blotting. The results showed that Chr-A treatment significantly inhibits glioblastoma progression in xenografted hairless mice, and enrichment analysis suggested that apoptosis, PI3K-Akt and Wnt signaling pathways were involved in the possible mechanisms. Chr-A increased the apoptotic ratio and the activity of caspase 3/7 in U251 and U87-MG cells. Western blotting revealed that Chr-A disturbed the balance between Bax and Bcl-2, activating a caspase cascade reaction and downregulating the expression of p-Akt and p-GSK-3ß, suggesting that Chr-A may contribute to glioblastoma regression modulating in the Akt/GSK-3ß signaling pathway to promote apoptosis of neuroglioma cells in vivo and in vitro. Therefore, Chr-A may hold therapeutic promise for glioblastoma.
Subject(s)
Glioblastoma , Proto-Oncogene Proteins c-akt , Mice , Animals , Humans , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Caspase 3/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Mice, Hairless , Cell Proliferation , Signal Transduction , Apoptosis , Glioblastoma/pathology , Cell Line, TumorABSTRACT
Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary dysfunctional disease, characterized by progressive vascular remodeling. Inflammation is an increasingly recognized feature of PAH, which is important for the initiation and maintenance of vascular remodeling. High levels of various inflammatory mediators have been documented in both PAH patients and experimental models of PAH. Similarly, multiple immune cells were found to accumulate in and around the wall of remodeled pulmonary vessels and in the vicinity of plexiform lesions, respectively. On the other hand, inflammation is also a bridge from autoimmune diseases to PAH. Autoimmune diseases always lead to chronic inflammation, characterized by the low-level persistent infiltration of immune cells, and elevated levels of several pro-inflammatory cytokines and chemokines. In addition, circulating autoantibodies are found in the peripheral blood of patients, indicating a possible role of autoimmunity in the pathogenesis of PAH. Thus, anti-inflammatory and immunotherapy might be new strategies to prevent or even reverse the process of PAH. Many anti-inflammatory agents and immunotherapies have been confirmed in animal models while some clinical trials employing immunotherapies are completed or currently underway. Here, we review pathological mechanisms associated with inflammation and immunity in the development of PAH, and discuss potential interventions for the treatment of PAH.
Subject(s)
Autoimmune Diseases , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Animals , Anti-Inflammatory Agents/therapeutic use , Autoimmune Diseases/drug therapy , Familial Primary Pulmonary Hypertension/complications , Familial Primary Pulmonary Hypertension/drug therapy , Humans , Hypertension, Pulmonary/drug therapy , Inflammation , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Artery , Vascular RemodelingABSTRACT
Hepatocellular carcinoma (HCC) is one of the most extensive and most deadly cancers in the world. Biomarkers for early diagnosis of HCC are still lacking, and noninvasive and effective biomarkers are urgently needed. Metabolomics is committed to studying the changes of metabolites under stimulation, and provides a new approach for discovery of potential biomarkers. In the current work, 1H nuclear magnetic resonance (NMR) metabolomics approach was utilized to explore the potential biomarkers in HCC progression, and the biomarker panel was evaluated by receiver operating characteristic (ROC) curve analyses. Our results revealed that a biomarker panel consisting of hippurate, creatinine, putrescine, choline, and taurine might be involved in HCC progression. Functional pathway analysis showed that taurine and hypotaurine metabolism is markedly involved in the occurrence and development of HCC. Furthermore, our results indicated that the TPA activity and the level and expression of PKM2 were gradually increased in HCC progression. This research provides a scientific basis for screening potential biomarkers of HCC.
Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Metabolomics/methods , Proton Magnetic Resonance Spectroscopy/methods , Animals , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/urine , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Diethylnitrosamine/toxicity , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Male , Metabolic Networks and Pathways , Multivariate Analysis , ROC Curve , Rats, Sprague-Dawley , Reproducibility of ResultsABSTRACT
Colorectal cancer (CRC) is the third most common cancer in men and the second most common cancer in women worldwide. CRC is the second leading cause of cancer-related deaths. Although some progress in the treatment of CRC has been achieved, the molecular mechanism of CRC is still unclear. In this study, alcohol dehydrogenase 1C(ADH1C) was first identified as a target gene closely associated with the development of CRC by the comprehensive application of transcriptomics, proteomics, metabonomics and in silico analysis. The ADH1C mRNA and protein expression in CRC cell lines and tumor tissues was lower than that in normal intestinal epithelial cell lines and healthy tissues. Overexpression of ADH1C inhibited the growth, migration, invasion and colony formation of CRC cell lines and prevented the growth of xenograft tumors in nude mice. The inhibitory effects of ADH1C on CRC cells in vitro were exerted by reducing the expression of PHGDH/PSAT1 and the serine level. This inhibition could be partially reversed by adding serine to the culture medium. These results showed that ADH1C is a potential drug target in CRC.
Subject(s)
Alcohol Dehydrogenase , Colorectal Neoplasms , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Colorectal Neoplasms/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Metabolic Networks and Pathways , Mice , Mice, Nude , RNA, Messenger/metabolism , Serine/genetics , Serine/metabolismABSTRACT
Glioblastoma multiforme (GBM) is the most malignant and lethal primary brain tumor in adults accounting for about 50% of all gliomas. The only treatment available for GBM is the drug temozolomide, which unfortunately has frequent drug resistance issue. By analyzing the hub genes of GBM via weighted gene co-expression network analysis (WGCNA) of the cancer genome atlas (TCGA) dataset, and using the connectivity map (CMAP) platform for drug repurposing, we found that multiple azole compounds had potential anti-GBM activity. When their anti-GBM activity was examined, however, only three benzimidazole compounds, i.e. flubendazole, mebendazole and fenbendazole, potently and dose-dependently inhibited proliferation of U87 and U251 cells with IC50 values below 0.26 µM. Benzimidazoles (0.125-0.5 µM) dose-dependently suppressed DNA synthesis, cell migration and invasion, and regulated the expression of key epithelial-mesenchymal transition (EMT) markers in U87 and U251 cells. Benzimidazoles treatment also dose-dependently induced the GBM cell cycle arrest at the G2/M phase via the P53/P21/cyclin B1 pathway. Furthermore, the drugs triggered pyroptosis of GBM cells through the NF-κB/NLRP3/GSDMD pathway, and might also concurrently induced mitochondria-dependent apoptosis. In a nude mouse U87 cell xenograft model, administration of flubendazole (12.5, 25, and 50 mg · kg-1 · d-1, i.p, for 3 weeks) dose-dependently suppressed the tumor growth without obvious adverse effects. Taken together, our results demonstrated that benzimidazoles might be promising candidates for the treatment of GBM.
Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzimidazoles/pharmacology , Central Nervous System Neoplasms/drug therapy , Glioblastoma/drug therapy , Antineoplastic Agents/chemistry , Benzimidazoles/chemistry , Cell Cycle Checkpoints/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Central Nervous System Neoplasms/metabolism , Central Nervous System Neoplasms/pathology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Molecular Structure , Structure-Activity Relationship , Tumor Cells, CulturedABSTRACT
Luteolin is a flavonoid in a variety of fruits, vegetables, and herbs, which has shown anti-inflammatory, antioxidant, and anti-cancer neuroprotective activities. In this study, we investigated the potential beneficial effects of luteolin on memory deficits and neuroinflammation in a triple-transgenic mouse model of Alzheimer's disease (AD) (3 × Tg-AD). The mice were treated with luteolin (20, 40 mg · kg-1 · d-1, ip) for 3 weeks. We showed that luteolin treatment dose-dependently improved spatial learning, ameliorated memory deficits in 3 × Tg-AD mice, accompanied by inhibiting astrocyte overactivation (GFAP) and neuroinflammation (TNF-α, IL-1ß, IL-6, NO, COX-2, and iNOS protein), and decreasing the expression of endoplasmic reticulum (ER) stress markers GRP78 and IRE1α in brain tissues. In rat C6 glioma cells, treatment with luteolin (1, 10 µM) dose-dependently inhibited LPS-induced cell proliferation, excessive release of inflammatory cytokines, and increase of ER stress marker GRP78. In conclusion, luteolin is an effective agent in the treatment of learning and memory deficits in 3 × Tg-AD mice, which may be attributable to the inhibition of ER stress in astrocytes and subsequent neuroinflammation. These results provide the experimental basis for further research and development of luteolin as a therapeutic agent for AD.
Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/drug therapy , Animals , Cognitive Dysfunction/drug therapy , Disease Models, Animal , Endoplasmic Reticulum Stress , Endoribonucleases/pharmacology , Endoribonucleases/therapeutic use , Luteolin/pharmacology , Luteolin/therapeutic use , Mice , Mice, Transgenic , Neuroinflammatory Diseases , Protein Serine-Threonine Kinases , RatsABSTRACT
Pulmonary hypertension (PH) is a cardiopulmonary disease characterized by a progressive increase in pulmonary vascular resistance. One of the initial pathogenic factors of PH is pulmonary arterial remodeling under various stimuli. Current marketed drugs against PH mainly relieve symptoms without significant improvement in overall prognosis. Discovering and developing new therapeutic drugs that interfere with vascular remodeling is in urgent need. Puerarin is an isoflavone compound extracted from the root of Kudzu vine, which is widely used in the treatment of cardiovascular diseases. In the present study, we evaluated the efficacy of puerarin in the treatment of experimental PH. PH was induced in rats by a single injection of MCT (50 mg/kg, sc), and in mice by exposure to hypoxia (10% O2) for 14 days. After MCT injection the rats were administered puerarin (10, 30, 100 mg · kg-1 · d-1, i.g.) for 28 days, whereas hypoxia-treated mice were pre-administered puerarin (60 mg · kg-1 · d-1, i.g.) for 7 days. We showed that puerarin administration exerted significant protective effects in both experimental PH rodent models, evidenced by significantly reduced right ventricular systolic pressure (RVSP) and lung injury, improved pulmonary artery blood flow as well as pulmonary vasodilation and contraction function, inhibited inflammatory responses in lung tissues, improved resistance to apoptosis and abnormal proliferation in lung tissues, attenuated right ventricular injury and remodeling, and maintained normal function of the right ventricle. We revealed that MCT and hypoxia treatment significantly downregulated BMPR2/Smad signaling in the lung tissues and PPARγ/PI3K/Akt signaling in the lung tissues and right ventricles, which were restored by puerarin administration. In addition, we showed that a novel crystal type V (Puer-V) exerted better therapeutic effects than the crude form of puerarin (Puer). Furthermore, Puer-V was more efficient than bosentan (a positive control drug) in alleviating the abnormal structural changes and dysfunction of lung tissues and right ventricles. In conclusion, this study provides experimental evidence for developing Puer-V as a novel therapeutic drug to treat PH.
Subject(s)
Hypertension, Pulmonary , Isoflavones , Animals , Disease Models, Animal , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/pathology , Hypoxia/chemically induced , Hypoxia/drug therapy , Isoflavones/pharmacology , Isoflavones/therapeutic use , Mice , Monocrotaline/adverse effects , Phosphatidylinositol 3-Kinases , Pulmonary Artery , Rats , Rodentia , Vascular RemodelingABSTRACT
Stroke is the major cause of death and disability worldwide. Most stroke patients who survive in the acute phase of ischemia display various extents of neurological deficits. In order to improve the prognosis of ischemic stroke, promoting endogenous neurogenesis has attracted great attention. Salvianolic acid A (SAA) has shown neuroprotective effects against ischemic diseases. In the present study, we investigated the neurogenesis effects of SAA in ischemic stroke rats, and explored the underlying mechanisms. An autologous thrombus stroke model was established by electrocoagulation. The rats were administered SAA (10 mg/kg, ig) or a positive drug edaravone (5 mg/kg, iv) once a day for 14 days. We showed that SAA administration significantly decreased infarction volume and vascular embolism, and ameliorated pathological injury in the hippocampus and striatum as well as the neurological deficits as compared with the model rats. Furthermore, we found that SAA administration significantly promoted neural stem/progenitor cells (NSPCs) proliferation, migration and differentiation into neurons, enhanced axonal regeneration and diminished neuronal apoptosis around the ipsilateral subventricular zone (SVZ), resulting in restored neural density and reconstructed neural circuits in the ischemic striatum. Moreover, we revealed that SAA-induced neurogenesis was associated to activating Wnt3a/GSK3ß/ß-catenin signaling pathway and downstream target genes in the hippocampus and striatum. Edaravone exerted equivalent inhibition on neuronal apoptosis in the SVZ, as SAA, but edaravone-induced neurogenesis was weaker than that of SAA. Taken together, our results demonstrate that long-term administration of SAA improves neurological function through enhancing endogenous neurogenesis and inhibiting neuronal apoptosis in ischemic stroke rats via activating Wnt3a/GSK3ß/ß-catenin signaling pathway. SAA may be a potential therapeutic drug to promote neurogenesis after stroke.
Subject(s)
Ischemic Stroke , Stroke , Animals , Caffeic Acids , Edaravone/therapeutic use , Glycogen Synthase Kinase 3 beta/metabolism , Lactates , Neurogenesis , Rats , Signal Transduction , Stroke/drug therapy , Stroke/pathology , Wnt3A Protein/metabolism , beta Catenin/metabolismABSTRACT
Glioblastoma (GBM), a malignant brain tumor, is a world-wide health problem because of its poor prognosis and high rates of recurrence and mortality. Apolipoprotein C1 (APOC1) is the smallest of apolipoproteins, implicated in many diseases. Recent studies have shown that APOC1 promotes tumorigenesis and development of several types of cancer. In this study we investigated the role of APOC1 in GBM tumorigenesis. Using in silico assays we showed that APOC1 was highly expressed in GBM tissues and its expression was closely related to GBM progression. We showed that APOC1 protein expression was markedly increased in four GBM cell lines (U251, U138, A172 and U87) compared to the normal brain glia cell lines (HEB, HA1800). In U251 cells, overexpression of APOC1 promoted cell proliferation, migration, invasion and colony information, which was reversed by APOC1 knockdown. APOC1 knockdown also markedly inhibited the growth of GBM xenografts in the ventricle of nude mice. We further demonstrated that APOC1 reduced ferroptosis by inhibiting KEAP1, promoting nuclear translocation of NRF2 and increasing expression of HO-1 and NQO1 in GBM cells. APOC1 also induced ferroptosis resistance by increasing cystathionine beta-synthase (CBS) expression, which promoted trans-sulfuration and increased GSH synthesis, ultimately leading to an increase in glutathione peroxidase-4 (GPX4). Thus, APOC1 plays a key role in GBM tumorigenesis, conferring resistance to ferroptosis, and may be a promising therapeutic target for GBM.
Subject(s)
Apolipoprotein C-I , Ferroptosis , Glioblastoma , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Animals , Humans , Mice , Apolipoprotein C-I/metabolism , Carcinogenesis/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic , Cystathionine beta-Synthase/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Mice, Nude , NF-E2-Related Factor 2/metabolismABSTRACT
The purpose of the present study was to examine the protective action and mechanisms of quercetin on the blood-brain barrier (BBB) in rats subjected to transient middle cerebral artery occlusion (tMCAO) and reperfusion. Quercetin (10, 30, 50 mg/kg) was intraperitoneally administered at the onset of reperfusion. The results showed that quercetin significantly reduced cerebral infarct volume, neurological deficit, BBB permeability and ROS generation via Sirt1/Nrf2/HO-1 signaling pathway. Moreover, EX527, a selective inhibitor of Sirt1, reversed these neuroprotective effects. Our findings indicate that quercetin has neuroprotective effects against cerebral ischemia-reperfusion injury by protecting BBB through Sirt1 signaling pathway in MCAO rats.
Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Animals , Blood-Brain Barrier/metabolism , Brain Ischemia/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Molecular Structure , Neuroprotective Agents/pharmacology , Quercetin/pharmacology , Rats , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Sirtuin 1ABSTRACT
Kaempferol, a natural plant flavonoid compound, has a neuroprotective effect on ischemic stroke, while the specific mechanism remains unclear. In the current study, we applied the comprehensive strategy that combines network pharmacology and experimental evaluation to explore the potential mechanism of kaempferol in the treatment of cerebral ischemia. First, network pharmacology analysis identified the biological process of kaempferol, suggesting that kaempferol may partly help in treating ischemic stroke by regulating apoptosis and inflammatory response. Then, we evaluated the efficacy of kaempferol in the acute stage of ischemic stroke and elucidated its effects and possible mechanisms on cell apoptosis and neuroinflammation involved by neutrophils. The results showed that kaempferol could significantly reduce the modified neurological severity score (mNSS), and reduce the volume of cerebral infarction and the degree of cerebral edema. In terms of anti-apoptosis, kaempferol could significantly reduce the number of TUNEL-positive cells, inhibit the expression of pro-apoptotic proteins and promote the expression of anti-apoptotic proteins. Kaempferol may play an anti-apoptotic role by up-regulating the expression level of the BDNF-TrkB-PI3K/AKT signaling pathway. In addition, we found that kaempferol inhibited neuron loss and the activation of glial cells, as well as the expression level of the inflammatory protein COX-2 and the classic pro-inflammatory signaling pathway TLR4/MyD88/NF-κB in the ischemic brain, reduced MPO activity and neutrophil counts in peripheral blood, and down-regulated neutrophil aggregation and infiltration in the ischemic brain. Western blot revealed that kaempferol down-regulated the activation of the JAK1/STAT3 signaling pathway in neutrophils and ischemic brains. Our study showed that kaempferol inhibited the activation and number of neutrophils in the rat peripheral blood and brain, which may be related to the down-regulation of the JAK1/STAT3 pathway.
Subject(s)
Brain Ischemia , Ischemic Stroke , Neuroprotective Agents , Animals , Rats , Kaempferols/pharmacology , Kaempferols/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neutrophils/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Toll-Like Receptor 4/metabolism , Cyclooxygenase 2/metabolism , Myeloid Differentiation Factor 88/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Neuroinflammatory Diseases , Network Pharmacology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Apoptosis Regulatory Proteins/metabolismABSTRACT
Neuroinflammation characterized by microglia activation is the mechanism of the occurrence and development of various central nervous system diseases. ST2825, as a peptide-mimetic MyD88 homodimerization inhibitor, has been identified as crucial molecule with an anti-inflammatory role in several immune cells, especially microglia. The purpose of the study was to investigate the anti-neuroinflammatory effects and the possible mechanism of ST2825. Methods: Lipopolysaccharide (LPS) was used to stimulate neuroinflammation in male BALB/c mice and BV2 microglia cells. The NO level was determined by Griess Reagents. The levels of pro-inflammatory cytokines and chemokines were determined by ELISA. The expressions of inflammatory proteins were determined by real-time PCR and Western blotting analysis. The level of ROS was detected by DCFH-DA staining. Results: In vivo, the improved levels of LPS-induced pro-inflammatory factors, including TNF-α, IL-6, IL-1ß, MCP-1 and ICAM-1 in the cortex and hippocampus, were reduced after ST2825 treatment. In vitro, the levels of LPS-induced pro-inflammatory factors, including NO, TNF-α, IL-6, IL-1ß, MCP-1, iNOS, COX2 and ROS, were remarkably decreased after ST2825 treatment. Further research found that the mechanism of its anti-neuroinflammatory effects appeared to be associated with inhibition of NF-κB activation and down-regulation of the NLRP3/cleaved caspase-1 signaling pathway. Conclusions: The current findings provide new insights into the activity and molecular mechanism of ST2825 for the treatment of neuroinflammation.
Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Caspase 1/metabolism , Heterocyclic Compounds, 2-Ring , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Microglia , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Reactive Oxygen Species/metabolism , Signal Transduction , Spiro Compounds , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Chrysomycin A (Chr-A), an antibiotic from Streptomyces, is reported to have anti-tumor and anti-tuberculous activities, but its anti-glioblastoma activity and possible mechanism are not clear. Therefore, the current study was to investigate the mechanism of Chr-A against glioblastoma using U251 and U87-MG human cells. CCK8 assays, EdU-DNA synthesis assays and LDH assays were carried out to detect cell viability, proliferation and cytotoxicity of U251 and U87-MG cells, respectively. Transwell assays were performed to detect the invasion and migration abilities of glioblastoma cells. Western blot was used to validate the potential proteins. Chr-A treatment significantly inhibited the growth of glioblastoma cells and weakened the ability of cell migration and invasion by down regulating the expression of slug, MMP2 and MMP9. Furthermore, Chr-A also down regulated Akt, p-Akt, GSK-3ß, p-GSK-3ß and their downstream proteins, such as ß-catenin and c-Myc in human glioblastoma cells. In conclusion, Chr-A may inhibit the proliferation, migration and invasion of glioblastoma cells through the Akt/GSK-3ß/ß-catenin signaling pathway.
Subject(s)
Glioblastoma , beta Catenin , Aminoglycosides , Anti-Bacterial Agents/pharmacology , Cell Line, Tumor , Cell Movement , Cell Proliferation , DNA/pharmacology , Glioblastoma/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Neoplasm Invasiveness , Proto-Oncogene Proteins c-akt/metabolism , beta Catenin/metabolismABSTRACT
The difference of astragaloside â £ content and the expression of its biosynthesis related genes in imitating wild Astragalus mongolicus(IWA) and cultivated A.mongolicus(CA) under different growth years were systematically compared and analyzed.Then the key enzyme genes affected the difference of astragaloside â £ content in the above two A.mongolicus were screened.High-perfo-rmance liquid chromatography(HPLC)was used to determine the content of astragaloside â £ in A.mongolicusunderthe above two diffe-rent growth patterns.Based on the Illumina HiSeq and PacBio high-throughput sequencing platforms, thesecond-and third-generation transcriptome sequencing(RNA-Seq)databaseof the two A.mongolicuswas constructed.The related enzyme genes in the biosynthetic pathway of astragaloside â £ were screened and verified byquantitative reverse transcriptase polymerase chain reaction(RT-qPCR).The RNA-sequencing(RNA-Seq) and RT-qPCR data of each gene were subjected to correlation analysis and trend analysis.The results showed that the variation trend of astragaloside â £ contentby HPLC wasthe same as that of genes by RNA-Seq and RT-qPCR in 1-4 year IWA and 1-2 year CA.The trend level of astragaloside â £ contentwas lower in 2-year IWA than 1-year IWA.Compared with 2-year IWA, 3-year IWA had an upward trend, while 4-year IWA hada downward trend versus 3-year IWA.Additionally, 1-year CA had increased trendthan 2-year CA.However, the content of astragaloside â £ in 5-year IWA was higher than that of 6-year IWA, which wasinconsistent with the findings of RNA-Seq and RT-qPCR.This study preliminarily clarifiedthat the difference of astragaloside â £ contentin 1-4 year IWA and 1-2 year CA wasclosely related to the expression of the upstream and midstream genes(MVK, CMK, PMK, MVD, SS) in the biosynthetic pathway.The results facilitate the production and planting of Radix Astragali seu Hedysari.
Subject(s)
Astragalus Plant , Saponins , Triterpenes , Astragalus Plant/genetics , Astragalus Plant/metabolism , Astragalus propinquus/genetics , Saponins/analysis , Saponins/genetics , Triterpenes/analysisABSTRACT
Patients with colorectal cancer treated with 5-fluorouracil (5-FU) and irinotecan (CPT-11) exhibit a risk for chemotherapy-induced colitis (CIC) that may lead to fatal consequences. Cryptotanshinone (CTS) is a natural compound extracted from the root of Salvia miltiorrhiza Bunge that shows potent antitumor activities. We previously reported CTS relieved 5-FU/ CPT-11 induced colitis in tumor-free mice. In this study, we studied the effect of CTS on 5-FU/ CPT-11 induced colitis in mice with colitis associated colon cancer (CAC). The effects of CTS on CIC were evaluated by disease activity index (DAI) and histological assessment via hematoxylin-and-eosin staining. Serum lipids and lipid-metabolic enzymes were detected by commercial kits. Fecal microbial diversity was detected by 16S ribosomal RNA gene sequencing. To find the role of fecal bacteria in CAC mice with 5-FU/ CPT-11 induced colitis, pseudo-germ-free mice were established by intragastric administration of mixed antibiotics. Except for decreasing tumor number (3 ± 1 vs 6 ± 1, p < 0.05), CTS significantly alleviated DAI (1.9 ± 0.6 vs 2.6 ± 0.5, p < 0.05) and regulated serum lipids in CAC mice with 5-FU/ CPT-11induced colitis. Compared with model group, CTS significantly increased serum triglycerides (TG) (1.13 ± 0.26 mM vs 0.79 ± 0.03 mM, p < 0.05), high density lipoprotein (HDL) (3.88 ± 0.1 mM vs 3.28 ± 0.05 mM, p < 0.001) and oxidized low-density lipoprotein (oxLDL) (288.12 ± 65.92 ng/mL vs 150.72 ± 42.13 ng/mL, p < 0.05) level but decreased serum adiponectin level (1177.47 ± 179.2 pg/mL vs 1523.43 ± 91.8 pg/mL, p < 0.05). Among fecal bacteria significantly correlated with lipid metabolism, CTS significantly decreased the abundance of g__norank_f__Muribaculaceae (21.15 % ± 5.7 % vs 41.84 ± 12.0 %, p < 0.01) but increased that of g_Lactobacillus (11.13 % ± 6.6 % vs 5.7 % ± 4.6 %, p < 0.05), g__Alistipes (3.66 % ± 0.7 % vs 1.47 % ± 1,0%, p < 0.01) and g__Odoribacter (1.31 % ± 0.7 % vs 0.30 % ± 0.2 %, p < 0.01). In addition, the development of CIC and abnormal lipid metabolism were significantly prevented in pseudo-germ-free mice. Therefore, we concluded CTS alleviated 5FU/CPT-11 induced colitis in CAC mice via regulating fecal flora associated lipid metabolism.