Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Langmuir ; 38(40): 12390-12398, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36179217

ABSTRACT

g-C3N4-assisted interface engineering has been developed as an effective method to improve the efficiency and stability of perovskite solar cells (PSCs). However, most of the reported works used g-C3N4-induced single-interface modification, which is difficult to passivate the bilateral interfaces of the perovskite layer at the same time. In this paper, we fabricated two kinds of C3N4 materials simultaneously (w-CN and y-CN) after the twice calcination of melamine and used them in the bilateral interface modification toward all-inorganic PSCs. The two kinds of C3N4 play different roles in different interface engineering. On the front interface, w-CN could optimize band level arrangement and improve the perovskite film quality, which contributes to the efficiency of the device. On the back interface, y-CN could also improve the film quality of the perovskite layer, accelerating the extraction of charge carriers. The champion efficiency of the CsPbIBr2-based device treated by the bilateral interface is significantly enhanced from 7.8 to 10.1%. Moreover, the modified perovskite film exhibits negligible degradation after 40 min of exposure in the ambient environment with a relative humidity of 70%, while the pristine perovskite film has a rapid degradation within 20 min.

2.
RSC Adv ; 9(1): 216-223, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-35521582

ABSTRACT

Three triphenylamine derivatives containing ferrocenyl groups (JW6, JW7 and JW8) were synthesized by facile syntheses. Their HOMO levels match the valence band energy of CH3NH3PbI3. The introduction of ferrocenyl was aimed to obtain hole transporting materials with high mobility for perovskite solar cells. JW7 shows higher hole mobility (4.2 × 10-4 cm2 V-1 s-1) than JW6 (1.3 × 10-4 cm2 V-1 s-1) and JW8 (1.5 × 10-4 cm2 V-1 s-1). Their film-forming properties are affected by their molecule structures. The methoxyl and N,N-dimethyl terminal substituents of JW7 and JW8 are beneficial for having better solubility than JW6. The regular mesoporous TiO2-based perovskite solar cells (n-i-p) and the inverted planar heterojunction perovskite solar cells (p-i-n) fabricated using JW7 show the highest power conversion efficiency of 9.36% and 11.43% under 100 mW cm-2 AM1.5G solar illumination. For p-i-n cells, the standard HTM PEDOT-based cell reaches an efficiency of 12.86% under the same conditions.

SELECTION OF CITATIONS
SEARCH DETAIL