Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Plant Cell Rep ; 43(8): 191, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977492

ABSTRACT

KEY MESSAGE: We reported the graph-based mitochondrial genomes of three foundation species (Saccharum spontaneum, S. robustum and S. officinarum) for the first time. The results revealed pan-structural variation and evolutionary processes in the mitochondrial genomes within Saccharum. Saccharum belongs to the Andropogoneae, and cultivars species in Saccharum contribute nearly 80% of sugar production in the world. To explore the genomic studies in Saccharum, we assembled 15 complete mitochondrial genomes (mitogenome) of three foundation species (Saccharum spontaneum, S. robustum and S. officinarum) using Illumina and Oxford Nanopore Technologies sequencing data. The mitogenomes of the three species were divided into a total of eight types based on contig numbers and linkages. All mitogenomes in the three species encoded 51 unique genes, including 32 protein-coding, 3 ribosomal RNA (rRNA) and 16 transfer RNA (tRNA) genes. The existence of long and short-repeat-mediated recombinations in the mitogenome of S. officinarum and S. robustum was revealed and confirmed through PCR validation. Furthermore, employing comparative genomics and phylogenetic analyses of the organelle genomes, we unveiled the evolutionary relationships and history of the major interspecific lineages in Saccharum genus. Phylogenetic analyses of homologous fragments between S. officinarum and S. robustum showed that S. officinarum and S. robustum are phylogenetically distinct and that they were likely parallel rather than domesticated. The variations between ancient (S. sinense and S. barberi) and modern cultivated species (S. hybrid) possibly resulted from hybridization involving different S. officinarum accessions. Lastly, this project reported the first graph-based mitogenomes of three Saccharum species, and a systematic comparison of the structural organization, evolutionary processes, and pan-structural variation of the Saccharum mitogenomes revealed the differential features of the Saccharum mitogenomes.


Subject(s)
Genome, Mitochondrial , Phylogeny , Saccharum , Genome, Mitochondrial/genetics , Saccharum/genetics , RNA, Transfer/genetics , Genome, Plant/genetics , RNA, Ribosomal/genetics , Evolution, Molecular
2.
Sci Data ; 11(1): 534, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789459

ABSTRACT

Microbes living inside or around sugarcane (Saccharum spp.) are crucial for their resistance to abiotic and biotic stress, growth, and development. Sequences of microbial genomes and genes are helpful to understand the function of these microbes. However, there is currently a lack of such knowledge in sugarcane. Here, we combined Nanopore and Illumina sequencing technologies to successfully construct the first high-quality metagenome-assembled genomes (MAGs) and gene catalogues of sugarcane culturable microbes (GCSCMs), which contained 175 species-level genome bins (SGBs), and 7,771,501 non-redundant genes. The SGBs included 79 novel culturable bacteria genomes, and 3 bacterial genomes with nitrogen-fixing gene clusters. Four single scaffold near-complete circular MAGs (cMAGs) with 0% contamination were obtained from Nanopore sequencing data. In conclusion, we have filled a research gap in the genomes and gene catalogues of culturable microbes of sugarcane, providing a vital data resource for further understanding the genetic basis and functions of these microbes. In addition, our methodology and results can provide guidance and reference for other plant microbial genome and gene catalogue studies.


Subject(s)
Genome, Bacterial , Saccharum , Saccharum/microbiology , Metagenome , Bacteria/genetics , Bacteria/classification , High-Throughput Nucleotide Sequencing , Nanopore Sequencing
3.
Front Plant Sci ; 15: 1421170, 2024.
Article in English | MEDLINE | ID: mdl-39100089

ABSTRACT

Saccharum complex includes genera Saccharum, Miscanthus, Erianthus, Narenga, and Tripidium. Since the Saccharum complex/Saccharinae constitutes the gene pool used by sugarcane breeders to introduce useful traits into sugarcane, studying the genomic characterization of the Saccharum complex has become particularly important. Here, we assembled graph-based mitochondrial genomes (mitogenomes) of four Saccharinae species (T. arundinaceum, E. rockii, M. sinensis, and N. porphyrocoma) using Illumina and PacBio sequencing data. The total lengths of the mitogenomes of T. arundinaceum, M. sinensis, E. rockii and N. porphyrocoma were 549,593 bp, 514,248 bp, 481,576 bp and 513,095 bp, respectively. Then, we performed a comparative mitogenomes analysis of Saccharinae species, including characterization, organelles transfer sequence, collinear sequence, phylogenetics analysis, and gene duplicated/loss. Our results provided the mitogenomes of four species closely related to sugarcane breeding, enriching the mitochondrial genomic resources of the Saccharinae. Additionally, our study offered new insights into the evolution of mitogenomes at the family and genus levels and enhanced our understanding of organelle evolution in the highly polyploid Saccharum genus.

SELECTION OF CITATIONS
SEARCH DETAIL