Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Science ; 309(5733): 436-42, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16020728

ABSTRACT

Leishmania species cause a spectrum of human diseases in tropical and subtropical regions of the world. We have sequenced the 36 chromosomes of the 32.8-megabase haploid genome of Leishmania major (Friedlin strain) and predict 911 RNA genes, 39 pseudogenes, and 8272 protein-coding genes, of which 36% can be ascribed a putative function. These include genes involved in host-pathogen interactions, such as proteolytic enzymes, and extensive machinery for synthesis of complex surface glycoconjugates. The organization of protein-coding genes into long, strand-specific, polycistronic clusters and lack of general transcription factors in the L. major, Trypanosoma brucei, and Trypanosoma cruzi (Tritryp) genomes suggest that the mechanisms regulating RNA polymerase II-directed transcription are distinct from those operating in other eukaryotes, although the trypanosomatids appear capable of chromatin remodeling. Abundant RNA-binding proteins are encoded in the Tritryp genomes, consistent with active posttranscriptional regulation of gene expression.


Subject(s)
Genome, Protozoan , Leishmania major/genetics , Sequence Analysis, DNA , Animals , Chromatin/genetics , Chromatin/metabolism , Gene Expression Regulation , Genes, Protozoan , Genes, rRNA , Glycoconjugates/biosynthesis , Glycoconjugates/metabolism , Leishmania major/chemistry , Leishmania major/metabolism , Leishmaniasis, Cutaneous/parasitology , Lipid Metabolism , Membrane Proteins/biosynthesis , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Sequence Data , Multigene Family , Protein Biosynthesis , Protein Processing, Post-Translational , Protozoan Proteins/biosynthesis , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , RNA Processing, Post-Transcriptional , RNA Splicing , RNA, Protozoan/genetics , RNA, Protozoan/metabolism , Transcription, Genetic
2.
J Bacteriol ; 185(11): 3392-9, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12754238

ABSTRACT

The comparative-genomic sequencing of two Mycobacterium tuberculosis strains enabled us to identify single nucleotide polymorphism (SNP) markers for studies of evolution, pathogenesis, and epidemiology in clinical M. tuberculosis. Phylogenetic analysis using these "comparative-genome markers" (CGMs) produced a highly unusual phylogeny with a complete absence of secondary branches. To investigate CGM-based phylogenies, we devised computer models to simulate sequence evolution and calculate new phylogenies based on an SNP format. We found that CGMs represent a distinct class of phylogenetic markers that depend critically on the genetic distances between compared "reference strains." Properly distanced reference strains generate CGMs that accurately depict evolutionary relationships, distorted only by branch collapse. Improperly distanced reference strains generate CGMs that distort and reroot outgroups. Applying this understanding to the CGM-based phylogeny of M. tuberculosis, we found evidence to suggest that this species is highly clonal without detectable lateral gene exchange. We noted indications of evolutionary bottlenecks, including one at the level of the PHRI "C" strain previously associated with particular virulence characteristics. Our evidence also suggests that loss of IS6110 to fewer than seven elements per genome is uncommon. Finally, we present population-based evidence that KasA, an important component of mycolic acid biosynthesis, develops G312S polymorphisms under selective pressure.


Subject(s)
Computer Simulation , Evolution, Molecular , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Polymorphism, Single Nucleotide , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Computational Biology , DNA Transposable Elements , Genome, Bacterial , Humans , Phylogeny , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL