ABSTRACT
The rise and fall of the Roman Empire was a socio-political process with enormous ramifications for human history. The Middle Danube was a crucial frontier and a crossroads for population and cultural movement. Here, we present genome-wide data from 136 Balkan individuals dated to the 1st millennium CE. Despite extensive militarization and cultural influence, we find little ancestry contribution from peoples of Italic descent. However, we trace a large-scale influx of people of Anatolian ancestry during the Imperial period. Between â¼250 and 550 CE, we detect migrants with ancestry from Central/Northern Europe and the Steppe, confirming that "barbarian" migrations were propelled by ethnically diverse confederations. Following the end of Roman control, we detect the large-scale arrival of individuals who were genetically similar to modern Eastern European Slavic-speaking populations, who contributed 30%-60% of the ancestry of Balkan people, representing one of the largest permanent demographic changes anywhere in Europe during the Migration Period.
Subject(s)
Human Migration , White People , Humans , Balkan Peninsula , Europe , White People/geneticsABSTRACT
The aim of the present paper is to determine the sex of the individual using three-dimensional geometric and inertial analyses of metatarsal bones. Metatarsals of 60 adult Chinese subjects of both sexes were scanned using Aquilion One 320 Slice CT Scanner. The three-dimensional models of the metatarsals were reconstructed, and thereafter, a novel software using the center of mass set as the origin and the three principal axes of inertia was employed for model alignment. Eight geometric and inertial variables were assessed: the bone length, bone width, bone height, surface-area-to-volume ratio, bone density, and principal moments of inertia around the x, y, and z axes. Furthermore, the discriminant functions were established using stepwise discriminant function analysis. A cross-validation procedure was performed to evaluate the discriminant accuracy of functions. The results indicated that inertial variables exhibit significant sexual dimorphism, especially principal moments of inertia around the z axis. The highest dimorphic values were found in the surface-area-to-volume ratio, principal moments of inertia around the z axis, and bone height. The accuracy rate of the discriminant functions for sex determination ranged from 88.3% to 98.3% (88.3%-98.3% cross-validated). The highest accuracy of function was established based on the third metatarsal bone. This study showed for the first time that the principal moment of inertia of the human bone may be successfully implemented for sex estimation. In conclusion, the sex of the individual can be accurately estimated using a combination of geometric and inertial variables of the metatarsal bones. The accuracy should be further confirmed in a larger sample size and be tested or independently developed for distinct population/age groups before the functions are widely applied in unidentified skeletons in forensic and bioarcheological contexts.