Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
Add more filters

Publication year range
1.
Chembiochem ; 25(12): e202400008, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38622060

ABSTRACT

The RAS-MAPK signaling pathway, crucial for cell proliferation and differentiation, involves key proteins KRAS and SOS1. Mutations in the KRAS and SOS1 genes are implicated in various cancer types, including pancreatic, lung, and juvenile myelomonocytic leukemia. There is considerable interest in identifying inhibitors targeting KRAS and SOS1 to explore potential therapeutic strategies for cancer treatment. In this study, advanced in silico techniques were employed to screen small molecule libraries at this interface, leading to the identification of promising lead compounds as potential SOS1 inhibitors. Comparative analysis of the average binding free energies of these predicted potent compounds with known SOS1 small molecule inhibitors revealed that the identified compounds display similar or even superior predicted binding affinities compared to the known inhibitors. These findings offer valuable insights into the potential of these compounds as candidates for further development as effective anti-cancer agents.


Subject(s)
Proto-Oncogene Proteins p21(ras) , SOS1 Protein , Small Molecule Libraries , SOS1 Protein/metabolism , SOS1 Protein/antagonists & inhibitors , SOS1 Protein/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Humans , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Docking Simulation , Protein Binding , Drug Evaluation, Preclinical
2.
Arch Microbiol ; 206(6): 269, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767708

ABSTRACT

Bacteriocins are ribosomally synthesized bacterial peptides endowed with antibacterial, antiprotozoal, anticancer and antiviral activities. In the present study, we evaluated the antiviral activities of two bacteriocins, enterocin DD14 (EntDD14) and lacticaseicin 30, against herpes simplex virus type 1 (HSV-1), human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Vero, Huh7 and Vero E6 cells, respectively. In addition, the interactions of these bacteriocins with the envelope glycoprotein D of HSV-1 and the receptor binding domains of HCoV-229E and SARS-CoV-2 have been computationally evaluated using protein-protein docking and molecular dynamics simulations. HSV-1 replication in Vero cells was inhibited by EntDD14 and, to a lesser extent, by lacticaseicin 30 added to cells after virus inoculation. EntDD14 and lacticaseicin 30 had no apparent antiviral activity against HCoV-229E; however, EntDD14 was able to inhibit SARS-CoV-2 in Vero E6 cells. Further studies are needed to elucidate the antiviral mechanism of these bacteriocins.


Subject(s)
Antiviral Agents , Bacteriocins , SARS-CoV-2 , Bacteriocins/pharmacology , Chlorocebus aethiops , Animals , Antiviral Agents/pharmacology , Vero Cells , Humans , SARS-CoV-2/drug effects , Virus Replication/drug effects , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Molecular Docking Simulation , Molecular Dynamics Simulation , Bridged-Ring Compounds
3.
Arch Pharm (Weinheim) ; 357(7): e2300266, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593306

ABSTRACT

This study reports a rapid and efficient synthesis of four novel aryl Schiff base derivatives. Biological activity and molecular modeling studies were conducted to evaluate the inhibitory effects of these compounds on human carbonic anhydrases (hCA) and cholinesterases. The results indicate that the triazole-ring-containing compounds have strong inhibitory effects on hCA I, hCA II, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) targets. Besides comparing the Schiff bases synthesized in our study to reference molecules, we conducted in silico investigations to examine how these compounds interact with their targets. Our studies revealed that these compounds can occupy binding sites and establish interactions with crucial residues, thus inhibiting the functions of the targets. These findings have significant implications as they can be utilized to develop more potent compounds for treating the diseases that these target proteins play crucial roles in or to obtain drug precursors with enhanced efficacy.


Subject(s)
Acetylcholinesterase , Butyrylcholinesterase , Carbonic Anhydrase II , Carbonic Anhydrase I , Carbonic Anhydrase Inhibitors , Cholinesterase Inhibitors , Schiff Bases , Schiff Bases/pharmacology , Schiff Bases/chemistry , Schiff Bases/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , Humans , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase I/metabolism , Structure-Activity Relationship , Molecular Structure , Molecular Docking Simulation , Computer Simulation , Dose-Response Relationship, Drug , Models, Molecular
4.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893361

ABSTRACT

A versatile family of quaternary propargylamines was synthesized employing the KA2 multicomponent reaction, through the single-step coupling of a number of amines, ketones, and terminal alkynes. Sustainable synthetic procedures using transition metal catalysts were employed in all cases. The inhibitory activity of these molecules was evaluated against human monoaminoxidase (hMAO)-A and hMAO-B enzymes and was found to be significant. The IC50 values for hMAO-B range from 152.1 to 164.7 nM while the IC50 values for hMAO-A range from 765.6 to 861.6 nM. Furthermore, these compounds comply with Lipinski's rule of five and exhibit no predicted toxicity. To understand their binding properties with the two target enzymes, key interactions were studied using molecular docking, all-atom molecular dynamics (MD) simulations, and MM/GBSA binding free energy calculations. Overall, herein, the reported family of propargylamines exhibits promise as potential treatments for neurodegenerative disorders, such as Parkinson's disease. Interestingly, this is the first time a propargylamine scaffold bearing an internal alkyne has been reported to show activity against monoaminoxidases.


Subject(s)
Alkynes , Molecular Docking Simulation , Molecular Dynamics Simulation , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Pargyline , Alkynes/chemistry , Alkynes/pharmacology , Monoamine Oxidase/metabolism , Monoamine Oxidase/chemistry , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemical synthesis , Humans , Pargyline/chemistry , Pargyline/analogs & derivatives , Pargyline/pharmacology , Propylamines/chemistry , Structure-Activity Relationship , Molecular Structure
5.
Glia ; 71(11): 2511-2526, 2023 11.
Article in English | MEDLINE | ID: mdl-37533369

ABSTRACT

The expressions of ion channels by Müller glial cells (MGCs) may change in response to various retinal pathophysiological conditions. There remains a gap in our understanding of MGCs' responses to photoreceptor degeneration towards finding therapies. The study explores how an inhibition of store-operated Ca2+ entry (SOCE) and its major component, Orai1 channel, in MGCs protects photoreceptors from degeneration. The study revealed increased Orai1 expression in the MGCs of retinal degeneration 10 (rd10) mice. Enhanced expression of oxidative stress markers was confirmed as a crucial pathological mechanism in rd10 retina. Inducing oxidative stress in rat MGCs resulted in increasing SOCE and Ca2+ release-activated Ca2+ (CRAC) currents. SOCE inhibition by 2-Aminoethoxydiphenyl borate (2-APB) protected photoreceptors in degenerated retinas. Finally, molecular simulations proved the structural and dynamical features of 2-APB to the target structure Orai1. Our results provide new insights into the physiology of MGCs regarding retinal degeneration and shed a light on SOCE and Orai1 as new therapeutic targets.


Subject(s)
Calcium Channels , Retinal Degeneration , Rats , Mice , Animals , Calcium Channels/metabolism , Ependymoglial Cells/metabolism , Retinal Degeneration/drug therapy , Retinal Degeneration/prevention & control , Calcium/metabolism , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , Calcium Signaling/physiology
6.
Mol Ther ; 30(2): 963-974, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34678509

ABSTRACT

Small molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies. Next, we characterized its effect on both targets by different in vitro experiments including the enzyme (main protease) inhibition-based assay, surface plasmon resonance (SPR) spectroscopy, pseudovirus neutralization on HEK293T/hACE2+TMPRSS2, and virus neutralization assay using xCELLigence MP real-time cell analyzer. Our integrated in silico and in vitro results confirmed the dual potential effect of montelukast both on the main protease enzyme inhibition and virus entry into the host cell (spike/ACE2). The virus neutralization assay results showed that SARS-CoV-2 virus activity was delayed with montelukast for 20 h on the infected cells. The rapid use of new small molecules in the pandemic is very important today. Montelukast, whose pharmacokinetic and pharmacodynamic properties are very well characterized and has been widely used in the treatment of asthma since 1998, should urgently be completed in clinical phase studies and, if its effect is proved in clinical phase studies, it should be used against coronavirus disease 2019 (COVID-19).


Subject(s)
Acetates/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Cyclopropanes/pharmacology , Quinolines/pharmacology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Sulfides/pharmacology , A549 Cells , Acetates/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Cyclopropanes/chemistry , Drug Repositioning , HEK293 Cells , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Neutralization Tests , Protein Conformation , Quinolines/chemistry , SARS-CoV-2/drug effects , Serine Endopeptidases/chemistry , Sulfides/chemistry , Vero Cells , Virus Internalization/drug effects
7.
Proteins ; 90(2): 322-339, 2022 02.
Article in English | MEDLINE | ID: mdl-34549826

ABSTRACT

Experimenters face challenges and limitations while analyzing glycoproteins due to their high flexibility, stereochemistry, anisotropic effects, and hydration phenomena. Computational studies complement experiments and have been used in characterization of the structural properties of glycoproteins. However, recent investigations revealed that computational studies face significant challenges as well. Here, we introduce and discuss some of these challenges and weaknesses in the investigations of glycoproteins. We also present requirements of future developments in computational biochemistry and computational biology areas that could be necessary for providing more accurate structural property analyses of glycoproteins using computational tools. Further theoretical strategies that need to be and can be developed are discussed herein.


Subject(s)
Computational Biology/methods , Glycoproteins , Glycoproteins/chemistry , Glycoproteins/metabolism , Humans
8.
Biochem J ; 478(18): 3445-3466, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34486667

ABSTRACT

OTU proteases antagonize the cellular defense in the host cells and involve in pathogenesis. Intriguingly, P. falciparum, P. vivax, and P. yoelii have an uncharacterized and highly conserved viral OTU-like proteins. However, their structure, function or inhibitors have not been previously reported. To this end, we have performed structural modeling, small molecule screening, deconjugation assays to characterize and develop first-in-class inhibitors of P. falciparum, P. vivax, and P. yoelii OTU-like proteins. These Plasmodium OTU-like proteins have highly conserved residues in the catalytic and inhibition pockets similar to viral OTU proteins. Plasmodium OTU proteins demonstrated Ubiquitin and ISG15 deconjugation activities as evident by intracellular ubiquitinated protein content analyzed by western blot and flow cytometry. We screened a library of small molecules to determine plasmodium OTU inhibitors with potent anti-malarial activity. Enrichment and correlation studies identified structurally similar molecules. We have identified two small molecules that inhibit P. falciparum, P. vivax, and P. yoelii OTU proteins (IC50 values as low as 30 nM) with potent anti-malarial activity (IC50 of 4.1-6.5 µM). We also established enzyme kinetics, druglikeness, ADME, and QSAR model. MD simulations allowed us to resolve how inhibitors interacted with plasmodium OTU proteins. These findings suggest that targeting malarial OTU-like proteases is a plausible strategy to develop new anti-malarial therapies.


Subject(s)
Antimalarials/pharmacology , Peptide Hydrolases/chemistry , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects , Plasmodium yoelii/drug effects , Protease Inhibitors/pharmacology , Protozoan Proteins/chemistry , Antimalarials/chemistry , Binding Sites , Erythrocytes/drug effects , Erythrocytes/parasitology , Gene Expression , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium vivax/enzymology , Plasmodium vivax/genetics , Plasmodium vivax/growth & development , Plasmodium yoelii/enzymology , Plasmodium yoelii/genetics , Plasmodium yoelii/growth & development , Protease Inhibitors/chemistry , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Quantitative Structure-Activity Relationship , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination
9.
Chem Biodivers ; 19(1): e202100530, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34889038

ABSTRACT

In the current study, starting from 4-methoxyaniline, four Schiff bases were synthesized from benzaldehydes with Br and OMe. Corresponding N-benzylanilines and their derivatives were obtained from reductions (by NaBH4 ) and substitutions (by acyl and tosyl chlorides) of these bases, respectively. The inhibitory effects of the sixteen compounds, twelve of which were novel compounds are examined. Then, we conducted molecular docking and binary QSAR studies to determine inhibitory-enzyme interactions of compounds that show an inhibitory effect. Our results reveal that methoxyanilline-derived compounds show good biological activities. The most active compound (22) has IC50 values of 2.83 µM. These novel AR enzyme inhibitors may open new avenues for better AR inhibitors in the future.


Subject(s)
Aniline Compounds/chemistry , Enzyme Inhibitors/chemical synthesis , Aldehyde Reductase/antagonists & inhibitors , Aldehyde Reductase/metabolism , Aniline Compounds/metabolism , Binding Sites , Enzyme Inhibitors/metabolism , Molecular Docking Simulation , Quantitative Structure-Activity Relationship
10.
Phytochem Anal ; 33(2): 303-319, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34585460

ABSTRACT

INTRODUCTION: Numerous efforts in natural product drug development are reported for the treatment of Coronavirus. Based on the literature, among these natural plants Artemisia annua L. shows some promise for the treatment of SARS-CoV-2. OBJECTIVE: The main objective of our study was to determine artemisinin content by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS), to investigate the in vitro biological activity of artemisinin from the A. annua plants grown in Turkey with various extracted methods, to elaborate in silico activity against SARS-CoV-2 using molecular modelling. METHODOLOGY: Twenty-one different extractions were applied. Direct and sequential extractions studies were compared with ultrasonic assisted maceration, Soxhlet, and ultra-rapid determined artemisinin active molecules by LC-ESI-MS/MS methods. The inhibition of spike protein and main protease (3CL) enzyme activity of SARS-CoV-2 virus was assessed by time resolved fluorescence energy transfer (TR-FRET) assay. RESULTS: Artemisinin content in the range 0.062-0.066%. Artemisinin showed significant inhibition of 3CL protease activity but not Spike/ACE-2 binding. The 50% effective concentration (EC50 ) of artemisinin against SARS-CoV-2 Spike pseudovirus was found greater than 50 µM (EC45 ) in HEK293T cell line whereas the cell viability was 94% of the control (P < 0.01). The immunosuppressive effects of artemisinin on TNF-α production on both pseudovirus and lipopolysaccharide (LPS)-induced THP-1 cells were found significant in a dose dependent manner. CONCLUSION: Further studies of these extracts for COVID-19 treatment will shed light to seek alternative treatment options. Moreover, these natural extracts can be used as an additional treatment option with medicines, as well as prophylactic use can be very beneficial for patients.


Subject(s)
Artemisia annua , Artemisinins , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Artemisia annua/chemistry , Artemisinins/pharmacology , Chromatography, Liquid , HEK293 Cells , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , SARS-CoV-2 , Tandem Mass Spectrometry
11.
Proteins ; 89(10): 1289-1299, 2021 10.
Article in English | MEDLINE | ID: mdl-34008220

ABSTRACT

A novel virus, severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19) worldwide appeared in 2019. Detailed scientific knowledge of the members of the Coronaviridae family, including the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is currently lacking. Structural studies of the MERS-CoV proteins in the current literature are extremely limited. We present here detailed characterization of the structural properties of MERS-CoV macro domain in aqueous solution. Additionally, we studied the impacts of chosen force field parameters and parallel tempering simulation techniques on the predicted structural properties of MERS-CoV macro domain in aqueous solution. For this purpose, we conducted extensive Hamiltonian-replica exchange molecular dynamics simulations and Temperature-replica exchange molecular dynamics simulations using the CHARMM36m and AMBER99SB parameters for the macro domain. This study shows that the predicted secondary structure properties including their propensities depend on the chosen simulation technique and force field parameter. We perform structural clustering based on the radius of gyration and end-to-end distance of MERS-CoV macro domain in aqueous solution. We also report and analyze the residue-level intrinsic disorder features, flexibility and secondary structure. Furthermore, we study the propensities of this macro domain for protein-protein interactions and for the RNA and DNA binding. Overall, results are in agreement with available nuclear magnetic resonance spectroscopy findings and present more detailed insights into the structural properties of MERS CoV macro domain in aqueous solution. All in all, we present the structural properties of the aqueous MERS-CoV macro domain using different parallel tempering simulation techniques, force field parameters and bioinformatics tools.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/metabolism , Molecular Dynamics Simulation , Water/chemistry , Water/metabolism , Humans , Protein Domains/physiology , Protein Structure, Secondary , Solutions
12.
J Chem Inf Model ; 61(2): 715-728, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33476150

ABSTRACT

Insect neuropeptide receptors, including allatostatin receptor type C (AstR-C), a G protein-coupled receptor, are among the potential targets for designing next-generation pesticides that despite their importance in offering a new mode-of-action have been overlooked. Focusing on AstR-C of Thaumetopoea pityocampa, a common pest in Mediterranean countries, by employing resonance energy transfer-based methods, we showed Gαi/o coupling and ß-arrestin recruitment of the receptor at sub-nanomolar and nanomolar ranges of the endogenous ligand, AST-C, respectively. Molecular docking and molecular dynamics simulation studies revealed the importance of extracellular loop 2 in AstRC/AST-C interaction, and a combination of in silico and in vitro approaches showed the substantial role of Q2716.55 in G protein-dependent activation of AstR-C possibly via contributing to the flexibility of the receptor's structure. The functional and structural insights obtained on T. pit AstR-C positively assist future efforts in developing environmentally friendly pest control agents that are needed urgently.


Subject(s)
Insect Proteins/chemistry , Lepidoptera , Neuropeptides , Receptors, Neuropeptide/chemistry , Animals , Molecular Docking Simulation , Pest Control , Receptors, G-Protein-Coupled
13.
Bioorg Chem ; 115: 105225, 2021 10.
Article in English | MEDLINE | ID: mdl-34364052

ABSTRACT

In the present study, new tacrine derivatives containing carbamate group were synthesized and their acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition activities were evaluated. All synthesized compounds inhibited both cholinesterases at nanomolar level. Among them, ((1,2,3,4-tetrahydroacridin-9-yl)amino)ethyl(3-nitrophenyl) carbamate (6k) showed the best inhibitor activity against AChE and BuChE with IC50 value of 22.15 nM and 16.96 nM, respectively. The calculated selectivity index revealed that the synthesized compounds (exclude 6l) have stronger inhibitory activity against BuChE than AChE. The most selective compound was 2-((1,2,3,4-tetrahydroacridin-9-yl)amino)ethyl(4-methoxyphenyl)-carbamate (6b) with the selectivity index of 0.12. Molecular modeling approaches were employed to understand the interaction between the synthesized compounds and proteins. As carbamate derivatives can act as pseudo-irreversible inhibitors of AChE and BuChE, covalent docking approaches was applied to determine the binding modes of novel compounds at binding sites of cholinesterase enzymes.


Subject(s)
Carbamates/pharmacology , Cholinesterase Inhibitors/pharmacology , Tacrine/pharmacology , Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Carbamates/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tacrine/chemistry
14.
Bioorg Chem ; 116: 105296, 2021 11.
Article in English | MEDLINE | ID: mdl-34488125

ABSTRACT

Eukaryotic elongation factor 2 kinase (eEF2K) is an unusual alpha kinase whose expression is highly upregulated in various cancers and contributes to tumor growth, metastasis, and progression. More importantly, eEF2K expression is associated with poor clinical outcome and shorter patient survival in breast, lung and ovarian cancers. Therefore, eEF2K is an emerging molecular target for development of novel targeted therapeutics and precision medicine in solid cancers. Currently, there are not any available potent and specific eEF2K inhibitors for clinical translation. In this study, we designed and synthesized a series of novel compounds with coumarin scaffold with various substitutions and investigated their effects in inhibiting eEF2K activity using in silico approaches and in vitro studies in breast cancer cells. We utilized an amide substitution at position 3 on the coumarin ring with their pharmacologically active groups containing pyrrolidine, piperidine, morpholine and piperazine groups with (CH2)2 bridged for aliphatic amides. Due to their ability to form covalent binding to the target enzyme, we also investigated the effects of boron containing groups on functionalized coumarin ring (3 compounds) and designed novel aliphatic and aromatic derivatives of coumarin scaffolds (10 compounds) and phenyl ring with boron groups (4 compounds). The Glide/SP module of the Maestro molecular modeling package was used to perform in silico analysis and molecular docking studies. According to our combined results, structure activity relationship (SAR) was performed in detail. Among the newly designed, synthesized, and tested compounds, our in vitro findings revealed that several compounds displayed a highly effective eEF2K inhibition at submicromolar concentrations in in vitro breast cancer cells. In conclusion, we identified novel compounds that can be used as eEF2K inhibitors and that they should be further evaluated by in vivo preclinical tumor models studies for antitumor efficacy and clinical translation.


Subject(s)
Elongation Factor 2 Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Drug , Elongation Factor 2 Kinase/metabolism , Female , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
15.
Cell Mol Life Sci ; 77(11): 2199-2216, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31451894

ABSTRACT

The enzyme poly-ADP-ribose-polymerase (PARP) has important roles for many forms of DNA repair and it also participates in transcription, chromatin remodeling and cell death signaling. Currently, some PARP inhibitors are approved for cancer therapy, by means of canceling DNA repair processes and cell division. Drug repurposing is a new and attractive aspect of therapy development that could offer low-cost and accelerated establishment of new treatment options. Excessive PARP activity is also involved in neurodegenerative diseases including the currently untreatable and blinding retinitis pigmentosa group of inherited retinal photoreceptor degenerations. Hence, repurposing of known PARP inhibitors for patients with non-oncological diseases might provide a facilitated route for a novel retinitis pigmentosa therapy. Here, we demonstrate and compare the efficacy of two different PARP inhibitors, BMN-673 and 3-aminobenzamide, by using a well-established retinitis pigmentosa model, the rd1 mouse. Moreover, the mechanistic aspects of the PARP inhibitor-induced protection were also investigated in the present study. Our results showed that rd1 rod photoreceptor cell death was decreased by about 25-40% together with the application of these two PARP inhibitors. The wealth of human clinical data available for BMN-673 highlights a strong potential for a rapid clinical translation into novel retinitis pigmentosa treatments. Remarkably, we have found that the efficacy of 3 aminobenzamide was able to decrease PARylation at the nanomolar level. Our data also provide a link between PARP activity with the Wnt/ß-catenin pathway and the major intracellular antioxidant concentrations behind the PARP-dependent retinal degeneration. In addition, molecular modeling studies were integrated with experimental studies for better understanding of the role of PARP1 inhibitors in retinal degeneration.


Subject(s)
Benzamides/therapeutic use , Phthalazines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Retinal Degeneration/drug therapy , Retinitis Pigmentosa/drug therapy , Animals , Drug Repositioning/methods , Humans , Mice , Poly(ADP-ribose) Polymerases/metabolism , Retina/drug effects , Retina/metabolism , Retina/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology
16.
J Chem Inf Model ; 60(8): 4047-4055, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32672456

ABSTRACT

The increased activity of monoamine oxidase (MAO) enzymes may lead to serious consequences since they reduce the level of neurotransmitters and are associated with severe neurodegenerative diseases. The inhibition of this enzyme, especially the B isoform, plays a vital role in the treatment of Parkinson's disease (PD). This study is aimed to find novel human MAO-B (hMAO-B) selective inhibitors. A total of 256.750 compounds from the Otava small molecules database were virtually screened gradually by employing several screening techniques for this purpose. Initially, a high-throughput virtual screening (HTVS) method was employed, and 10% of the molecules having high docking scores were subjected to binary QSAR models for further screening of their therapeutic activities against PD, Alzheimer's disease (AD), and depression as well as for their toxicity and pharmacokinetic properties. Then, enzyme selectivity of the ligands towards the A and B forms that passed through all the filters were studied using the induced-fit docking method and molecular dynamics simulations. At the end of this exhaustive research, we identified two hit molecules ligand 3 (Otava ID: 7131545) and ligand 4 (Otava ID: 7566820). Based on the in vitro results, these two compounds (ligands 3 and 4) together with ligands 1 and 2 found in our previous study showed activity at the nanomolar (nM) level, and the results indicated that these four ligands inhibit hMAO-B better than the FDA-approved drug selegiline.


Subject(s)
Monoamine Oxidase Inhibitors , Quantitative Structure-Activity Relationship , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/toxicity , Structure-Activity Relationship
17.
J Chem Inf Model ; 60(3): 1766-1778, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32027127

ABSTRACT

Eukaryotic elongation factor-2 kinase (eEF-2K) is an unusual alpha kinase commonly upregulated in various human cancers, including breast, pancreatic, lung, and brain tumors. We have demonstrated that eEF-2K is relevant to poor prognosis and shorter patient survival in breast and lung cancers and validated it as a molecular target using genetic methods in related in vivo tumor models. Although several eEF-2K inhibitors have been published, none of them have shown to be potent and specific enough for translation into clinical trials. Therefore, development of highly effective novel inhibitors targeting eEF-2K is needed for clinical applications. However, currently, the crystal structure of eEF-2K is not known, limiting the efforts for designing novel inhibitor compounds. Therefore, using homology modeling of eEF-2K, we designed and synthesized novel coumarin-3-carboxamides including compounds A1, A2, and B1-B4 and evaluated their activity by performing in silico analysis and in vitro biological assays in breast cancer cells. The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) area results showed that A1 and A2 have interaction energies with eEF-2K better than those of B1-B4 compounds. Our in vitro results indicated that compounds A1 and A2 were highly effective in inhibiting eEF-2K at 1.0 and 2.5 µM concentrations compared to compounds B1-B4, supporting the in silico findings. In conclusion, the results of this study suggest that our homology modeling along with in silico analysis may be effectively used to design inhibitors for eEF-2K. Our newly synthesized compounds A1 and A2 may be used as novel eEF-2K inhibitors with potential therapeutic applications.


Subject(s)
Elongation Factor 2 Kinase , Neoplasms , Coumarins/pharmacology , Humans
18.
Mol Pharm ; 16(3): 1255-1271, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30681344

ABSTRACT

Renin-angiotensin aldosterone system inhibitors are for a long time extensively used for the treatment of cardiovascular and renal diseases. AT1 receptor blockers (ARBs or sartans) act as antihypertensive drugs by blocking the octapeptide hormone Angiotensin II to stimulate AT1 receptors. The antihypertensive drug candesartan (CAN) is the active metabolite of candesartan cilexetil (Atacand, CC). Complexes of candesartan and candesartan cilexetil with 2-hydroxylpropyl-ß-cyclodextrin (2-HP-ß-CD) were characterized using high-resolution electrospray ionization mass spectrometry and solid state 13C cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) spectroscopy. The 13C CP/MAS results showed broad peaks especially in the aromatic region, thus confirming the strong interactions between cyclodextrin and drugs. This experimental evidence was in accordance with molecular dynamics simulations and quantum mechanical calculations. The synthesized and characterized complexes were evaluated biologically in vitro. It was shown that as a result of CAN's complexation, CAN exerts higher antagonistic activity than CC. Therefore, a formulation of CC with 2-HP-ß-CD is not indicated, while the formulation with CAN is promising and needs further investigation. This intriguing result is justified by the binding free energy calculations, which predicted efficient CC binding to 2-HP-ß-CD, and thus, the molecule's availability for release and action on the target is diminished. In contrast, CAN binding was not favored, and this may allow easy release for the drug to exert its bioactivity.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/chemistry , Angiotensin II Type 1 Receptor Blockers/chemistry , Benzimidazoles/chemistry , Biphenyl Compounds/chemistry , Drug Compounding/methods , Prodrugs/chemistry , Tetrazoles/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Benzimidazoles/chemical synthesis , Carbon-13 Magnetic Resonance Spectroscopy , HEK293 Cells , Humans , Hydrogen Bonding , Molecular Conformation , Molecular Dynamics Simulation , Renin-Angiotensin System , Spectrometry, Fluorescence , Spectrometry, Mass, Electrospray Ionization , Tetrazoles/chemical synthesis
19.
J Chem Inf Model ; 59(10): 4314-4327, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31429557

ABSTRACT

Angiotensin II type 1 receptor (AT1R) is a prototypical class A G protein-coupled receptor (GPCR) that has an important role in cardiovascular pathologies and blood pressure regulation as well as in the central nervous system. GPCRs may exist and function as monomers; however, they can assemble to form higher order structures, and as a result of oligomerization, their function and signaling profiles can be altered. In the case of AT1R, the classical Gαq/11 pathway is initiated with endogenous agonist angiotensin II binding. A variety of cardiovascular pathologies such as heart failure, diabetic nephropathy, atherosclerosis, and hypertension are associated with this pathway. Recent findings reveal that AT1R can form homodimers and activate the noncanonical (ß-arrestin-mediated) pathway. Nevertheless, the exact dimerization interface and atomic details of AT1R homodimerization have not been still elucidated. Here, six different symmetrical dimer interfaces of AT1R are considered, and homodimers were constructed using other published GPCR crystal dimer interfaces as template structures. These AT1R homodimers were then inserted into the model membrane bilayers and subjected to all-atom molecular dynamics simulations. Our simulation results along with the principal component analysis and water pathway analysis suggest four different interfaces as the most plausible: symmetrical transmembrane (TM)1,2,8; TM5; TM4; and TM4,5 AT1R dimer interfaces that consist of one inactive and one active protomer. Moreover, we identified ILE2386.33 as a hub residue in the stabilization of the inactive state of AT1R.


Subject(s)
Receptor, Angiotensin, Type 1/chemistry , Dimerization , Humans , Models, Molecular , Molecular Dynamics Simulation , Principal Component Analysis , Protein Conformation
20.
Bioorg Chem ; 87: 838-850, 2019 06.
Article in English | MEDLINE | ID: mdl-31003041

ABSTRACT

A series of novel bis-coumarin derivatives containing triazole moiety as a linker between the alkyl chains was synthesized and their inhibitory activity against the human carbonic anhydrase (hCA) isoforms I, II, IX and XII were evaluated. In addition, cytotoxic effects of the synthesized compounds on renal adenocarcinoma (769P), hepatocellular carcinoma (HepG2) and breast adeno carcinoma (MDA-MB-231) cell lines were examined. While the hCA I and II isoforms were inhibited in the micromolar range, the tumor-associated isoform hCA IX and XII were inhibited in the high nanomolar range. 4-methyl-7-((1-(12-((2-oxo-2H-chromen-7-yl)oxy)dodecyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (5p) showed the strongest inhibitory activity against hCA IX with the Ki of 144.6 nM and 4-methyl-7-((1-(10-((2-oxo-2H-chromen-7-yl)oxy)decyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (5n) exhibited the highest hCA XII inhibition with the Ki of 71.5 nM. In order to better understand the inhibitory profiles of studied molecules, multiscale molecular modelling approaches were applied. Low energy docking poses of studied molecules at the binding sites of targets have been predicted. In addition, electrostatic potential surfaces (ESP) for binding sites were also generated to understand interactions between proteins and active ligands.


Subject(s)
Antineoplastic Agents/pharmacology , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Carcinoma, Hepatocellular/drug therapy , Coumarins/pharmacology , Liver Neoplasms/drug therapy , Antigens, Neoplasm/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Coumarins/chemical synthesis , Coumarins/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Models, Molecular , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL