Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Oecologia ; 160(4): 643-55, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19333625

ABSTRACT

We examined spatial and temporal patterns of tree water use and aspects of hydraulic architecture in four common tree species of central Australia--Corymbia opaca, Eucalyptus victrix, E. camaldulensis and Acacia aneura--to better understand processes that constrain water use in these environments. These four widely distributed species occupy contrasting niches within arid environments including woodlands, floodplains and riparian environments. Measurements of tree water use and leaf water potential were made at two sites with contrasting water table depths during a period of high soil water availability following summer rainfall and during a period of low soil water availability following 7 months of very little rainfall during 2007. There were significant differences in specific leaf area (SLA), sapwood area to leaf area ratios and sapwood density between species. Sapwood to leaf area ratio increased in all species from April to November indicating a decline in leaf area per unit sapwood area. Despite very little rainfall in the intervening period three species, C. opaca, E. victrix and E. camaldulensis maintained high leaf water potentials and tree water use during both periods. In contrast, leaf water potential and water use in the A. aneura were significantly reduced in November compared to April. Despite contrasting morphology and water use strategies, we observed considerable convergence in water use among the four species. Wood density in particular was strongly related to SLA, sapwood area to leaf area ratios and soil to leaf conductance, with all four species converging on a common relationship. Identifying convergence in hydraulic traits can potentially provide powerful tools for scaling physiological processes in natural ecosystems.


Subject(s)
Environment , Trees/physiology , Water/metabolism , Analysis of Variance , Northern Territory , Plant Leaves/anatomy & histology , Plant Transpiration/physiology , Seasons , Soil/analysis , Species Specificity
2.
Tree Physiol ; 39(12): 1961-1974, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31631220

ABSTRACT

Vapour pressure deficit (D) is projected to increase in the future as temperature rises. In response to increased D, stomatal conductance (gs) and photosynthesis (A) are reduced, which may result in significant reductions in terrestrial carbon, water and energy fluxes. It is thus important for gas exchange models to capture the observed responses of gs and A with increasing D. We tested a series of coupled A-gs models against leaf gas exchange measurements from the Cumberland Plain Woodland (Australia), where D regularly exceeds 2 kPa and can reach 8 kPa in summer. Two commonly used A-gs models were not able to capture the observed decrease in A and gs with increasing D at the leaf scale. To explain this decrease in A and gs, two alternative hypotheses were tested: hydraulic limitation (i.e., plants reduce gs and/or A due to insufficient water supply) and non-stomatal limitation (i.e., downregulation of photosynthetic capacity). We found that the model that incorporated a non-stomatal limitation captured the observations with high fidelity and required the fewest number of parameters. Whilst the model incorporating hydraulic limitation captured the observed A and gs, it did so via a physical mechanism that is incorrect. We then incorporated a non-stomatal limitation into the stand model, MAESPA, to examine its impact on canopy transpiration and gross primary production. Accounting for a non-stomatal limitation reduced the predicted transpiration by ~19%, improving the correspondence with sap flow measurements, and gross primary production by ~14%. Given the projected global increases in D associated with future warming, these findings suggest that models may need to incorporate non-stomatal limitation to accurately simulate A and gs in the future with high D. Further data on non-stomatal limitation at high D should be a priority, in order to determine the generality of our results and develop a widely applicable model.


Subject(s)
Plant Transpiration , Vapor Pressure , Australia , Photosynthesis , Plant Leaves , Plant Stomata , Water
3.
Tree Physiol ; 28(5): 753-60, 2008 May.
Article in English | MEDLINE | ID: mdl-18316307

ABSTRACT

Long-term declines in rainfall in south-western Australia have resulted in increased interest in the hydraulic characteristics of jarrah (Eucalyptus marginata Donn ex Smith) forest established in the region's drinking water catchments on rehabilitated bauxite mining sites. We hypothesized that in jarrah forest established on rehabilitated mine sites: (1) leaf area index (L) is independent of initial tree spacing; and (2) more densely planted trees have less leaf area for the same leaf mass, or the same sapwood area, and have denser sapwood. Initial stand densities ranged from about 600 to 9000 stems ha(-1), and trees were 18 years old at the time of sampling. Leaf area index was unaffected by initial stand density, except in the most sparsely stocked stands where L was 1.2 compared with 2.0-2.5 in stands at other spacings. The ratio of leaf area to sapwood area (A(l):A(s)) was unaffected by tree spacing or tree size and was 0.2 at 1.3 m height and 0.25 at the crown base. There were small increases in sapwood density and decreases in leaf specific area with increased spacing. Tree diameter or basal area was a better predictor of leaf area than sapwood area. At the stand scale, basal area was a good predictor of L (r(2) = 0.98, n = 15) except in the densest stands. We conclude that the hydraulic attributes of this forest type are largely independent of initial tree spacing, thus simplifying parameterization of stand and catchment water balance models.


Subject(s)
Eucalyptus/growth & development , Eucalyptus/metabolism , Ecosystem , Plant Leaves/growth & development , Plant Leaves/metabolism , Population Density , Water/metabolism
4.
J Environ Qual ; 37(3): 1263-70, 2008.
Article in English | MEDLINE | ID: mdl-18453446

ABSTRACT

To explore the agronomic potential of an Australian coal fly ash, we conducted two glasshouse experiments in which we measured chlorophyll fluorescence, CO2 assimilation (A), transpiration, stomatal conductance, biomass accumulation, seed yield, and elemental uptake for canola (Brassica napus) grown on soil amended with an alkaline fly ash. In Experiment 1, application of up to 25 Mg/ha of fly ash increased A and plant weight early in the season before flowering and seed yield by up to 21%. However, at larger rates of ash application A, plant growth, chlorophyll concentration, and yield were all reduced. Increases in early vigor and seed yield were associated with enhanced uptake of phosphorus (P) by the plants treated with fly ash. Fly ash application did not influence accumulation of B, Cu, Mo, or Zn in the stems at any stage of plant growth or in the seed at harvest, except Mo concentration, which was elevated in the seed. Accumulation of these elements was mostly in the leaves, where concentrations of Cu and Mo increased with any amount of ash applied while that of B occurred only with ash applied at 625 Mg/ha. In Experiment 2, fly ash applied at 500 Mg/ha and mixed into the whole 30 cm soil core was detrimental to growth and yield of canola, compared with restricting mixing to 5 or 15 cm depth. In contrast, application of ash at 250 Mg/ha with increasing depth of mixing increased A and seed yield. We concluded that fly ash applied at not more than 25 Mg/ha and mixed into the top 10 to 15 cm of soil is sufficient to obtain yield benefits.


Subject(s)
Brassica/metabolism , Carbon , Particulate Matter , Soil , Brassica/growth & development , Brassica/physiology , Coal Ash
5.
Tree Physiol ; 26(2): 219-28, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16356919

ABSTRACT

We examined sources of water and daily and seasonal water use patterns in two riparian tree species occupying contrasting niches within riparian zones throughout the wet-dry tropics of northern Australia: Corymbia bella Hill and Johnson is found along the top of the levee banks and Melaleuca argentea W. Fitzg. is restricted to riversides. Patterns of tree water use (sap flow) and leaf water potential were examined in four trees of each species at three locations along the Daly River in the Northern Territory. Predawn leaf water potential was higher than -0.5 MPa throughout the dry season in both species, but was lower at the end of the dry season than at the beginning of the dry season. Contrary to expectations, predawn leaf water potential was lower in M. argentea trees along the river than in C. bella trees along the levees. In contrast, midday leaf water potential was lower in the C. bella trees than in M. argentea trees. There were no seasonal differences in tree water use in either species. Daily water use was lower in M. argentea trees than in C. bella trees. Whole-tree hydraulic conductance, estimated from the slope of the relationship between leaf water potential and sap flow, did not differ between species. Xylem deuterium concentrations indicated that M. argentea trees along the riverbank were principally reliant on river water or shallow groundwater, whereas C. bella trees along the levee were reliant solely on soil water reserves. This study demonstrated strong gradients of tree water use within tropical riparian communities, with implications for estimating riparian water use requirements and for the management of groundwater resources.


Subject(s)
Melaleuca/metabolism , Myrtaceae/metabolism , Water/metabolism , Australia , Deuterium/analysis , Plant Leaves/metabolism , Plant Transpiration/physiology , Rivers , Seasons , Soil/analysis , Time Factors , Tropical Climate , Water/analysis , Xylem/physiology
6.
Oecologia ; 126(3): 434-443, 2001 Feb.
Article in English | MEDLINE | ID: mdl-28547459

ABSTRACT

Data from savannas of northern Australia are presented for net radiation, latent and sensible heat, ecosystem surface conductance (G s) and stand water use for sites covering a latitudinal range of 5° or 700 km. Measurements were made at three locations of increasing distance from the northern coastline and represent high- (1,750 mm), medium- (890 mm) and low- (520 mm) rainfall sites. This rainfall gradient arises from the weakened monsoonal influence with distance inland. Data were coupled to seasonal estimates of leaf area index (LAI) for the tree and understorey strata. All parameters were measured at the seasonal extremes of late wet and dry seasons. During the wet season, daily rates of evapotranspiration were 3.1-3.6 mm day-1 and were similar for all sites along the rainfall gradient and did not reflect site differences in annual rainfall. During the dry season, site differences were very apparent with evapotranspiration 2-18 times lower than wet season rates, the seasonal differences increasing with distance from coast and reduced annual rainfall. Due to low overstorey LAI, more than 80% of water vapour flux was attributed to the understorey. Seasonal differences in evapotranspiration were mostly due to reductions in understorey leaf area during the dry season. Water use of individual trees did not differ between the wet and dry seasons at any of the sites and stand water use was a simple function of tree density. G s declined markedly during the dry season at all sites, and we conclude that the savanna water (and carbon) balance is largely determined by G s and its response to atmospheric and soil water content and by seasonal adjustments to canopy leaf area.

7.
Tree Physiol ; 21(12-13): 977-88, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11498345

ABSTRACT

Daily and seasonal fluxes of carbon dioxide and water vapor above a north Australian savanna were recorded over a complete dry season-wet season annual cycle using the eddy covariance technique. Wet season rates of photosynthesis and transpiration were larger than those measured in the dry season and were dominated by the presence of the grassy understory. As the dry season progressed and the grass understory died, ecosystem rates of assimilation and water vapor flux declined substantially. By the end of the dry season, canopy assimilation and evapotranspiration rates were 20-25% of wet season values. Assimilation was light saturated in the dry season but not in the wet season. Stomatal control of transpiration increased between the wet and dry season. This was revealed by the decline in the slope of E with increasing leaf-to-air vapor pressure difference (D) between wet and dry seasons, and also by the significant decrease in the ratio of boundary to canopy conductance observed between the wet and dry seasons. A simple pan-tropical modeling of leaf area index or wet season canopy CO2 flux was undertaken. It was shown that with readily available data for foliar N content and the ratio of rainfall to potential evaporation, leaf index and wet season canopy CO2 flux can be successfully estimated for a number of tropical ecosystems, including north Australian savannas.


Subject(s)
Atmosphere/analysis , Carbon/analysis , Photosynthesis , Plant Transpiration , Seasons , Water/analysis , Carbon/physiology , Circadian Rhythm , Ecosystem , Northern Territory , Rain , Trees/physiology , Water/physiology
8.
BMC Ecol ; 2: 8, 2002 Aug 01.
Article in English | MEDLINE | ID: mdl-12153703

ABSTRACT

BACKGROUND: Stomata respond to vapour pressure deficit (D) - when D increases, stomata begin to close. Closure is the result of a decline in guard cell turgor, but the link between D and turgor is poorly understood. We describe a model for stomatal responses to increasing D based upon cellular water relations. The model also incorporates impacts of increasing levels of water stress upon stomatal responses to increasing D. RESULTS: The model successfully mimics the three phases of stomatal responses to D and also reproduces the impact of increasing plant water deficit upon stomatal responses to increasing D. As water stress developed, stomata regulated transpiration at ever decreasing values of D. Thus, stomatal sensitivity to D increased with increasing water stress. Predictions from the model concerning the impact of changes in cuticular transpiration upon stomatal responses to increasing D are shown to conform to experimental data. Sensitivity analyses of stomatal responses to various parameters of the model show that leaf thickness, the fraction of leaf volume that is air-space, and the fraction of mesophyll cell wall in contact with air have little impact upon behaviour of the model. In contrast, changes in cuticular conductance and membrane hydraulic conductivity have significant impacts upon model behaviour. CONCLUSION: Cuticular transpiration is an important feature of stomatal responses to D and is the cause of the 3 phase response to D. Feed-forward behaviour of stomata does not explain stomatal responses to D as feedback, involving water loss from guard cells, can explain these responses.


Subject(s)
Disasters , Models, Biological , Plant Transpiration/physiology , Adaptation, Physiological , Cell Wall/physiology , Plant Leaves/cytology , Plant Leaves/physiology , Pressure
9.
Environ Pollut ; 72(1): 23-44, 1991.
Article in English | MEDLINE | ID: mdl-15092112

ABSTRACT

Two-year-old beech and Norway spruce seedlings were exposed to a combination of ozone and acid mist treatments in open-top chambers in Scotland during the months of July through to September 1988. Replicate pairs of chambers received charcoal-filtered air (control), ozone-enriched air (140 nl ozone litre(-1)) or 140 nl ozone litre(-1) plus a synthetic acid mist (pH 2.5) composed of ammonium nitrate and sulphuric acid. Field measurements of assimilation and stomatal conductance were made during August. In addition, measurements of assimilation and conductance were made during September in the laboratory. Light response curves of assimilation and conductance were determined using a GENSTAT nonrectangular hyperbolic model. During February 1988/9 the Norway spruce were subject to a four day warming period at 12 degrees C and the light response of assimilation determined. The same plants were then subject to a 3-h night-time frost of -10 degrees C. The following day the time-course of the recovery of assimilation was determined. It was found that ozone fumigation did not influence the light response of assimilation of beech trees in the field, although stomatal conductance was reduced in the ozone-fumigated trees. The rate of light-saturated assimilation of Norway spruce was increased by ozone fumigation when measured in the field. Measurements of assimilation of Norway spruce made during the winter showed that prior to rewarming there was no difference in the rate of light-saturated assimilation for control and ozone-fumigated trees. However, the ozone plus acid mist-treated trees exhibited a significantly higher rate. The 4-day period of warming to 12 degrees C increased the rate of light-saturated assimilation in all treatments but only the ozone plus acid mist-treated trees showed a significant increase. Following a 3-h frost to -10 degrees C the control trees exhibited a reduction in the rate of light-saturated assimilation (Amax) to 80% of the pre-frost value. In comparison, following the frost, the ozone-fumigated trees showed an Amax of 74% of the pre-frost value. The ozone plus acid mist-treated trees showed an Amax of 64% of the pre-frost trees. The time taken for Amax to attain 50% of the pre-frost value increased from 30 min (control) to 85 min for ozone-fumigated trees to 190 min (ozone plus acid mist). These results are discussed in relation to the impact of mild, short-term frosts, which are known to occur with greater frequency than extreme, more catastrophic frost events. A simple conceptual framework is proposed to explain the variable results obtained in the literature with respect to the impact of ozone upon tree physiology.

10.
Environ Pollut ; 79(2): 135-42, 1993.
Article in English | MEDLINE | ID: mdl-15091898

ABSTRACT

Norway spruce seedlings were sprayed twice weekly with one of a range of artificial mists at either pH 2.5, 3.0 or 5.6, for three months. The mists consisted of either (NH4)2SO4 (pH 5.6), NH4NO3 (pH 5.6), water (pH 5.6), HNO3 (pH 2.5), H2SO4 (pH 2.5). In late December 1988 and early January 1989 the light response of assimilation and stomatal conductance were assessed in the laboratory following a 4-day equilibration period at 12 degrees C. The intact trees were then subjected to a mild (-10 degrees C), brief (3 h) frost in the dark and the recovery of light saturated assimilation (Amax) was followed during the subsequent light period. The same trees were then subjected to a second 3 h (-18 degrees C) frost. The recovery of Amax during the next day was followed. All ion-containing mists stimulated Amax and apparent quantum yield relative to control trees, irrespective of pH. The mists containing SO4 made stomatal conductance unresponsive to light flux density and caused the stomata to lock open. Frosts of -10 degrees C and -18 degrees C did not inhibit the Amax of control trees for longer than 200 min into the light period. In contrast, the ion-containing mists exerted a significant inhibitory effect upon the recovery of Amax. Nitric acid inhibited Amax to 35% of the pre-frost value, whilst the remaining treatments inhibited Amax between 15% and 40% of the pre-frost value. It is concluded that SO4 causes increased mid-winter frost sensitivity and NO3 ameliortes this effect. The results are discussed in relation to forest decline.

11.
Environ Pollut ; 90(1): 41-9, 1995.
Article in English | MEDLINE | ID: mdl-15091499

ABSTRACT

Seeds of Eucalyptus tetrodonta were sown under ambient or CO(2) enriched (700 microl litre(-1)) conditions in tropical Australia. Four sets of measurements were made, the first two after 12 months, on trees growing either in pots or planted in the ground. The third and fourth set were made after 18 and 30 months exposure to CO(2) enrichment, on trees growing in the ground. After 12 months exposure to CO(2) enrichment, the rate of light-saturated assimilation (Amax) of plants growing in the ground was determined. Responses of CO(2) assimilation to variations in leaf temperature, leaf-to-air vapour pressure deficit (LAVPD), light flux density and CO(2) concentration were also measured in the laboratory using plants growing in large pots. There was no significant difference in Amax between pot and ground located plants. Assimilation of E. tetrodonta was relatively insensitive to changes in LAVPD for both ambient and CO(2) enriched plants but the temperature optimum of assimilation was increased in plants grown and measured under CO(2) enrichment. Plants grown with CO(2) enrichment had an increased rate of light-saturated assimilation and apparent quantum yield was significantly increased by CO(2) enrichment. In contrast, carboxylation efficiency was decreased significantly by CO(2) enrichment. After 18 months growth with CO(2) enrichment, there was no sign of a decline in assimilation rate compared to measurements undertaken after 12 months. At low LAVPD values, assimilation rate was not influenced by CO(2) treatment but at moderate to high LAVPD, plants grown under CO(2) enrichment exhibited a larger assimilation rate than control plants. Specific leaf area and chlorophyll contents decreased in response to CO(2) enrichment, whilst foliar soluble protein contents and chlorophyll a/b ratios were unaffected by CO(2) treatment. Changes in soluble protein and chlorophyll contents in response to CO(2) enrichment did not account for changes in assimilation between treatments. After 30 months exposure to CO(2) enrichment, the rate of light-saturated assimilation was approximately 50% larger than controls and this enhancement was larger than that observed after 18 months exposure to CO(2) enrichment.

12.
Environ Pollut ; 63(4): 365-79, 1990.
Article in English | MEDLINE | ID: mdl-15092316

ABSTRACT

CO(2) assimilation rate, stomatal conductance and chlorophyll content of current and previous years' needles of Norway spruce were measured in May 1988, 205 days after the cessation of ozone fumigation during the summer of 1987. Rates of assimilation were consistently higher for both needle year age classes for ozone fumigated trees in comparison to control trees, although only statistically significant for part of the day for current year's needles. A 26% and 48% stimulation, overall, in mean daily rates of assimilation for current and previous years' needles of ozone fumigated trees was observed. This was due to an enhanced apparent quantum yield and light saturated rate of assimilation of ozone fumigated trees. The temperature response regression of assimilation versus temperature was also greater, such that at any given temperature, assimilation was higher for ozone treated trees than control trees. Stomatal conductance was greater for ozone fumigated trees than the controls, but this was only marginally statistically significant. Moreover, there was a consistent increase in chlorophyll content in both year classes in ozone-treated trees. These results are discussed in relation to a possible long term effect of ozone fumigation upon the processes of conifer winter hardening and spring de-hardening.

13.
Environ Pollut ; 63(4): 345-63, 1990.
Article in English | MEDLINE | ID: mdl-15092315

ABSTRACT

Four-year-old, seed-grown trees of Norway spruce (Picea abies (L.) Karst.) were exposed in open-top chambers to charcoal-filtered air (8 h daily mean 54 microg O(3) m(-3)) over three consecutive summers (1986-1988). In mid-May 1988, before the third season of fumigation and more than 7 months after exposure to ozone the previous summer had terminated, daily rates of transpiration from intact shoots and water loss from excised needles were measured together with the amount of wax on the needle surface. In mid-July, 92 days after the beginning of the third year of exposure, the wettability of needles was assessed by measuring the contact angle of water droplets on the surface of needles. Exposure to 156 microg O(3) m(-3) resulted in a 16% increase in daily transpiration in current year's needles and a 28% increase in 1-year old needles. These effects were associated with slower stomatal closure in response to increasing water deficit in the needles previously exposed to 156 microg m(-3) ozone. The long-lasting nature of such ozone-induced effects could predispose trees to drought and winter desiccation. No significant effects of ozone were found on the amount of wax covering the needle surface, but a marked increase in the wettability of needles exposed to ozone was observed. The far reaching physiological consequences of these effects in the field and the possibility that similar disturbances may contribute to the decline of high-altitude forests of Norway spruce in Europe are discussed.

14.
Oecologia ; 145(1): 87-99, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15971085

ABSTRACT

Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees >or= 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5-6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.


Subject(s)
Models, Statistical , Models, Theoretical , Trees/growth & development , Biomass , Carbon , Humidity , Regression Analysis , Tropical Climate
15.
Tree Physiol ; 13(2): 145-55, 1993 Sep.
Article in English | MEDLINE | ID: mdl-14969892

ABSTRACT

Red spruce (Picea rubens Sarg.) seedlings growing outside in open-top chambers were sprayed twice weekly with artificial mists at either pH 2.5 or 5.6, for five months during the 1988 growing season. The mists contained one of the following: water, pH 5.6 (control); (NH(4))(2)SO(4), pH 5.6; NH(4)NO(3), pH 5.6; HNO(3), pH 2.5; H(2)SO(4), pH 2.5; or (NH(4))(2)SO(4) + NH(4)NO(3), pH 2.5. During January 1989, the light responses of assimilation and stomatal conductance were assessed in the laboratory following a 4-day equilibration at 12 degrees C. The aerial portions of the intact trees were then subjected to a mild (-10 degrees C) frost for three hours during the night and the rate of recovery of light-saturated assimilation (A(max)) was determined the following day using the same branches as were used for the assimilation studies before the frost treatment. The same trees were then subjected to a second frost of -18 degrees C for three hours during the following night and the recovery of A(max) of the same branches was measured the next day. All of the acid mist treatments increased A(max) and apparent quantum yield relative to the control treatment when measured before the frost treatments. Frosts of -10 and -18 degrees C resulted in a significant decline in A(max) of seedlings in all treatments except the control. Stomatal conductance increased with increasing irradiance in seedlings in the acid mist treatments that did not contain SO(4) (2-) ion. Stomatal conductance of seedlings in acid mist treatments containing SO(4) (2-) ion was insensitive to changes in irradiance over the range 50-1500 micro mol m(-2) s(-1). It is concluded that acid precipitation increased the sensitivity of the assimilation response to midwinter frosts that follow a brief warm period. The SO(4) (2-) ion appears to be significant in causing increased sensitivity to frost and in causing stomatal insensitivity to light flux density.

16.
Trends Ecol Evol ; 14(1): 11-16, 1999 Jan.
Article in English | MEDLINE | ID: mdl-10234241

ABSTRACT

Seasonally dry tropical ecosystems occur in the Americas, Africa, India and Australia. They sustain large human populations, determine regional climate, are sites of biological and cultural conservation, and have significant economic value. Evergreen, deciduous and semi- and brevideciduous trees frequently co-occur. Recent research reveals how these various phenological groups respond to changes in soil and atmospheric water content. Cost-benefit analyses of evergreen and deciduous species show how leaves of deciduous species live fast and die young, whereas leaves of evergreen species live slowly but for longer.

17.
Tree Physiol ; 5(3): 387-97, 1989 Sep.
Article in English | MEDLINE | ID: mdl-14972982

ABSTRACT

Pressure-volume curves, day and night transpiration rates, needle drying curves, and shoot water potentials were determined for 2-year-old red spruce trees that had been exposed for three months to a range of acid mists (pH 2.5 to pH 5.0) containing equimolar (NH(4))(2)SO(4) and HNO(3). No effect of acid mist was observed on cuticular resistance or on the rates of day and night transpiration, although trees exposed to acid mist exhibited symptoms of mild water stress. Significant decreases in maximum turgor, the relative water content (RWC) associated with zero turgor, and bulk volumetric elastic modulus occurred as the pH of the mist decreased from 5.0 to 2.5. At all RWC values, there was an increase in solute potential as mist pH decreased. Shoot water potential declined with a decrease in pH of the mist.

18.
Tree Physiol ; 17(5): 291-9, 1997 May.
Article in English | MEDLINE | ID: mdl-14759852

ABSTRACT

We studied assimilation, stomatal conductance and growth of Mangifera indica L. saplings during long-term exposure to a CO(2)-enriched atmosphere in the seasonally wet-dry tropics of northern Australia. Grafted saplings of M. indica were planted in the ground in four air-conditioned, sunlit, plastic-covered chambers and exposed to CO(2) at the ambient or an elevated (700 micro mol mol(-1)) concentration for 28 months. Light-saturating assimilation (A(max)), stomatal conductance (g(s)), apparent quantum yield (phi), biomass and leaf area were measured periodically. After 28 months, the CO(2) treatments were changed in all four chambers from ambient to the elevated concentration or vice versa, and A(max) and g(s) were remeasured during a two-week exposure to the new regime. Throughout the 28-month period of exposure, A(max) and apparent quantum yield of leaves in the elevated CO(2) treatment were enhanced, whereas stomatal conductance and stomatal density of leaves were reduced. The relative impacts of atmospheric CO(2) enrichment on assimilation and stomatal conductance were significantly larger in the dry season than in the wet season. Total tree biomass was substantially increased in response to atmospheric CO(2) enrichment throughout the experimental period, but total canopy area did not differ between CO(2) treatments at either the first or the last harvest. During the two-week period following the change in CO(2) concentration, A(max) of plants grown in ambient air but measured in CO(2)-enriched air was significantly larger than that of trees grown and measured in CO(2)-enriched air. There was no difference in A(max) between trees grown and measured in ambient air compared to trees grown in CO(2)-enriched air but measured in ambient air. No evidence of down-regulation of assimilation in response to atmospheric CO(2) enrichment was observed when rates of assimilation were compared at a common intercellular CO(2) concentration. Reduced stomatal conductance in response to atmospheric CO(2) enrichment was attributed to a decline in both stomatal aperture and stomatal density.

19.
Tree Physiol ; 20(18): 1219-1226, 2000 Dec.
Article in English | MEDLINE | ID: mdl-12651484

ABSTRACT

Daily and seasonal patterns of transpiration were measured in evergreen eucalypt trees growing at a wet (Darwin), intermediate (Katherine) and dry site (Newcastle Waters) along a steep rainfall gradient in a north Australian savanna. Relationships between tree size and tree water use were also determined. Diameter at breast height (DBH) was an excellent predictor of sapwood area in the five eucalypt species sampled along the rainfall gradient. A single relationship existed for all species at all sites. Mean daily water use was also correlated to DBH in both wet and dry seasons. There were no significant differences in the relationship between DBH and tree water use at Darwin or Katherine. Among the sites, tree water use was lowest at Newcastle Waters at all DBHs. The relationship between DBH and tree leaf area was similar between species and locations, but the slope of the relationship was less at the end of the dry season than at the end of the wet season at all locations. There was a strong relationship between sapwood area and leaf area that was similar at all sites along the gradient. Transpiration rates were significantly lower in trees at the driest site than at the other sites, but there were no significant differences in transpiration rates between trees growing at Darwin and Katherine. Transpiration rates did not vary significantly between seasons at any site. At all sites, there was only a 10% decline in water use per tree between the wet and dry seasons. A monthly aridity index (pan evaporation/rainfall) and predawn leaf water potential showed strong seasonal patterns. It is proposed that dry season conditions exert control on tree water use during the wet season, possibly through an effect on xylem structure.

20.
Tree Physiol ; 19(9): 591-597, 1999 Jul.
Article in English | MEDLINE | ID: mdl-12651533

ABSTRACT

Australian savannas exhibit marked seasonality in precipitation, with more than 90% of the annual total falling between October and May. The dry season is characterized by declining soil water availability and high vapor pressure deficits (up to 2.5 kPa). We used heat pulse technology to measure whole-tree transpiration rates on a daily and seasonal basis for the two dominant eucalypts at a site near Darwin, Australia. Contrary to expectations, transpiration rates were higher during the dry season than during the wet season, largely because of increased evaporative demand and the exploitation of groundwater reserves by the trees. Transpiration rates exhibited a marked hysteresis in relation to vapor pressure deficit, which was more marked in the dry season than in the wet season. This result may be attributable to low soil hydraulic conductivity, or the use of stored stem water, or both. Tree water use was strongly correlated with leaf area and diameter at breast height and there were no differences in transpiration between the species studied. These results are discussed in relation to scaling tree water use to stand water use.

SELECTION OF CITATIONS
SEARCH DETAIL