Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Cell ; 172(1-2): 68-80.e12, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29290469

ABSTRACT

Signaling across cellular membranes, the 826 human G protein-coupled receptors (GPCRs) govern a wide range of vital physiological processes, making GPCRs prominent drug targets. X-ray crystallography provided GPCR molecular architectures, which also revealed the need for additional structural dynamics data to support drug development. Here, nuclear magnetic resonance (NMR) spectroscopy with the wild-type-like A2A adenosine receptor (A2AAR) in solution provides a comprehensive characterization of signaling-related structural dynamics. All six tryptophan indole and eight glycine backbone 15N-1H NMR signals in A2AAR were individually assigned. These NMR probes provided insight into the role of Asp522.50 as an allosteric link between the orthosteric drug binding site and the intracellular signaling surface, revealing strong interactions with the toggle switch Trp 2466.48, and delineated the structural response to variable efficacy of bound drugs across A2AAR. The present data support GPCR signaling based on dynamic interactions between two semi-independent subdomains connected by an allosteric switch at Asp522.50.


Subject(s)
Allosteric Regulation , Receptor, Adenosine A2A/chemistry , Signal Transduction , Adenosine A2 Receptor Agonists/chemistry , Adenosine A2 Receptor Agonists/pharmacology , Allosteric Site , Animals , Molecular Docking Simulation , Pichia , Protein Binding , Receptor, Adenosine A2A/metabolism , Sf9 Cells , Spodoptera
2.
J Biol Chem ; : 107497, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925329

ABSTRACT

Activation of G proteins through nucleotide exchange initiates intracellular signaling cascades essential for life processes. Under normal conditions, nucleotide exchange is regulated by the formation of G protein-G protein-coupled receptor (GPCR) complexes. Single point mutations in the Gα subunit of G proteins bypass this interaction, leading to loss-of-function or constitutive gain-of-function, which is closely linked with the onset of multiple diseases. Despite the recognized significance of Gα mutations in disease pathology, structural information for most variants is lacking, potentially due to inherent protein dynamics that pose challenges for crystallography. To address this, we leveraged an integrative spectroscopic and computational approach to structurally characterize seven of the most frequently observed clinically-relevant mutations in the stimulatory Gα subunit, GαS. A previously proposed allosteric model of Gα activation linked structural changes in the nucleotide binding pocket with functionally important changes in interactions between switch regions. We investigated this allosteric connection in GαS by integrating data from variable temperature CD spectroscopy, which measured changes in global protein structure and stability, and molecular dynamics (MD) simulations, which observed changes in interaction networks between GαS switch regions. Further, saturation-transfer difference NMR (STD-NMR) spectroscopy was applied to observe changes in nucleotide interactions with residues within the nucleotide binding site. These data have enabled testing of predictions regarding how mutations in GαS result in loss or gain of function and evaluation of proposed structural mechanisms. The integration of experimental and computational data allowed us to propose a more nuanced classification of mechanisms underlying GαS gain-of-function and loss-of-function mutations.

3.
Angew Chem Int Ed Engl ; 61(40): e202203784, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35922375

ABSTRACT

PEGylation is a promising approach to address the central challenge of applying biologics, i.e., lack of protein stability in the demanding environment of the human body. Wider application is hindered by lack of atomic level understanding of protein-PEG interactions, preventing design of conjugates with predicted properties. We deployed an integrative structural and biophysical approach to address this critical challenge with the PEGylated carbohydrate recognition domain of human galectin-3 (Gal3C), a lectin essential for cell adhesion and potential biologic. PEGylation dramatically increased Gal3C thermal stability, forming a stable intermediate and redirecting its unfolding pathway. Structural details revealed by NMR pointed to a potential role of PEG localization facilitated by charged residues. Replacing these residues subtly altered the protein-PEG interface and thermal unfolding behavior, providing insight into rationally designing conjugates while preserving PEGylation benefits.


Subject(s)
Biological Products , Galectin 3 , Carbohydrates , Humans , Polyethylene Glycols/chemistry , Protein Stability
4.
Methods ; 180: 79-88, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32911074

ABSTRACT

G protein-coupled receptors (GPCRs) represent the largest class of "druggable" proteins in the human genome. For more than a decade, crystal structures and, more recently, cryoEM structures of GPCR complexes have provided unprecedented insight into GPCR drug binding and cell signaling. Nevertheless, structure determination of receptors in complexes with weakly binding molecules or complex polypeptides remains especially challenging, including for hormones, many of which have so far eluded researchers. Nuclear magnetic resonance (NMR) spectroscopy has emerged as a promising approach to determine structures of ligands bound to their receptors and to provide insights into the dynamics of GPCR-bound drugs. The capability to investigate compounds with weak binding affinities has also been leveraged in NMR applications to identify novel lead compounds in drug screening campaigns. We review recent structural biology studies of GPCR ligands by NMR, highlighting new methodologies enabling studies of GPCRs with native sequences and in native-like membrane environments that provide insights into important drugs and endogenous ligands.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Neuropeptides/chemistry , Receptors, G-Protein-Coupled/chemistry , Humans , Ligands , Lipid Bilayers/chemistry , Models, Molecular , Pharmaceutical Preparations/chemistry , Protein Binding
5.
Proc Natl Acad Sci U S A ; 115(50): 12733-12738, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30463958

ABSTRACT

The human proteome contains 826 G protein-coupled receptors (GPCR), which control a wide array of key physiological functions, making them important drug targets. GPCR functions are based on allosteric coupling from the extracellular orthosteric drug binding site across the cell membrane to intracellular binding sites for partners such as G proteins and arrestins. This signaling process is related to dynamic equilibria in conformational ensembles that can be observed by NMR in solution. A previous high-resolution NMR study of the A2A adenosine receptor (A2AAR) resulted in a qualitative characterization of a network of such local polymorphisms. Here, we used 19F-NMR experiments with probes at the A2AAR intracellular surface, which provides the high sensitivity needed for a refined description of different receptor activation states by ensembles of simultaneously populated conformers and the rates of exchange among them. We observed two agonist-stabilized substates that are not measurably populated in apo-A2AAR and one inactive substate that is not seen in complexes with agonists, suggesting that A2AAR activation includes both induced fit and conformational selection mechanisms. Comparison of A2AAR and a constitutively active mutant established relations between the 19F-NMR spectra and signaling activity, which enabled direct assessment of the difference in basal activity between the native protein and its variant.


Subject(s)
Receptor, Adenosine A2A/metabolism , Arrestins/metabolism , Binding Sites , Cell Membrane/metabolism , Cytoplasm/metabolism , Fluorine-19 Magnetic Resonance Imaging/methods , GTP-Binding Proteins/metabolism , Humans , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology
6.
J Biomol NMR ; 73(8-9): 451-460, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31407201

ABSTRACT

The second isoform of the human voltage dependent anion channel (VDAC2) is a mitochondrial porin that translocates calcium and other metabolites across the outer mitochondrial membrane. VDAC2 has been implicated in cardioprotection and plays a critical role in a unique apoptotic pathway in tumor cells. Despite its medical importance, there have been few biophysical studies of VDAC2 in large part due to the difficulty of obtaining homogeneous preparations of the protein for spectroscopic characterization. Here we present high resolution magic angle spinning nuclear magnetic resonance (NMR) data obtained from homogeneous preparation of human VDAC2 in 2D crystalline lipid bilayers. The excellent resolution in the spectra permit several sequence-specific assignments of the signals for a large portion of the VDAC2 N-terminus and several other residues in two- and three-dimensional heteronuclear correlation experiments. The first 12 residues appear to be dynamic, are not visible in cross polarization experiments, and they are not sufficiently mobile on very fast timescales to be visible in 13C INEPT experiments. A comparison of the NMR spectra of VDAC2 and VDAC1 obtained from highly similar preparations demonstrates that the spectral quality, line shapes and peak dispersion exhibited by the two proteins are nearly identical. This suggests an overall similar dynamic behavior and conformational homogeneity, which is in contrast to two earlier reports that suggested an inherent conformational heterogeneity of VDAC2 in membranes. The current data suggest that the sample preparation and spectroscopic methods are likely applicable to studying other human membrane porins, including human VDAC3, which has not yet been structurally characterized.


Subject(s)
Lipid Bilayers , Nuclear Magnetic Resonance, Biomolecular/methods , Voltage-Dependent Anion Channel 2/chemistry , Humans , Molecular Dynamics Simulation , Protein Conformation , Voltage-Dependent Anion Channel 1/chemistry
7.
J Am Chem Soc ; 140(26): 8228-8235, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29874058

ABSTRACT

Tryptophan indole 15N-1H signals are well separated in nuclear magnetic resonance (NMR) spectra of proteins. Assignment of the indole 15N-1H signals therefore enables one to obtain site-specific information on complex proteins in supramacromolecular systems, even when extensive assignment of backbone 15N-1H resonances is challenging. Here we exploit the unique indole 15N-1H chemical shift by introducing extrinsic tryptophan reporter residues at judiciously chosen locations in a membrane protein for increased coverage of structure and function by NMR. We demonstrate this approach with three variants of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor, each containing a single extrinsic tryptophan near the receptor intracellular surface, in helix V, VI, or VII, respectively. We show that the native A2AAR global protein fold and ligand binding activity are preserved in these A2AAR variants. The indole 15N-1H signals from the extrinsic tryptophan reporter residues show different responses to variable efficacy of drugs bound to the receptor orthosteric cavity, and the indole 15N-1H chemical shift of the tryptophan introduced at the intracellular end of helix VI is sensitive to conformational changes resulting from interactions with a polypeptide from the carboxy terminus of the GαS intracellular partner protein. Introducing extrinsic tryptophans into proteins in complex supramolecular systems thus opens new avenues for NMR investigations in solution.


Subject(s)
Membrane Proteins/chemistry , Molecular Probes/chemistry , Nuclear Magnetic Resonance, Biomolecular , Receptor, Adenosine A2A/chemistry , Tryptophan/chemistry , Humans , Ligands , Pichia/chemistry
8.
Biochemistry ; 54(4): 994-1005, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25545271

ABSTRACT

The N-terminus of the voltage-dependent anion channel (VDAC) has been proposed to contain the mechanistically important gating helices that modulate channel opening and closing. In this study, we utilize magic angle spinning nuclear magnetic resonance (MAS NMR) to determine the location and structure of the N-terminus for functional channels in lipid bilayers by measuring long-range (13)C-(13)C distances between residues in the N-terminus and other domains of VDAC reconstituted into DMPC lipid bilayers. Our structural studies show that the distance between A14 Cß in the N-terminal helix and S193 Cß is ∼4-6 Å. Furthermore, VDAC phosphorylation by a mitochondrial kinase at residue S193 has been claimed to delay mitochondrial cell death by causing a conformational change that closes the channel, and a VDAC-Ser193Glu mutant has been reported to show properties very similar to those of phosphorylated VDAC in a cellular context. We expressed VDAC-S193E and reconstituted it into DMPC lipid bilayers. Two-dimensional (13)C-(13)C correlation experiments showed chemical shift perturbations for residues located in the N-terminus, indicating possible structural perturbations to that region. However, electrophysiological data recorded on VDAC-S193E showed that channel characteristics were identical to those of wild type samples, indicating that phosphorylation of S193 does not directly affect channel gating. The combination of NMR and electrophysiological results allows us to discuss the validity of proposed gating models.


Subject(s)
Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Magnetic Resonance Spectroscopy/methods , Voltage-Dependent Anion Channel 1/chemistry , Voltage-Dependent Anion Channel 1/metabolism , Crystallization , Humans , Ion Channel Gating/physiology , Protein Structure, Secondary , Protein Structure, Tertiary
9.
J Am Chem Soc ; 137(47): 14877-86, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26218479

ABSTRACT

We report a magic angle spinning (MAS) NMR structure of the drug-resistant S31N mutation of M218-60 from Influenza A. The protein was dispersed in diphytanoyl-sn-glycero-3-phosphocholine lipid bilayers, and the spectra and an extensive set of constraints indicate that M218-60 consists of a dimer of dimers. In particular, ∼280 structural constraints were obtained using dipole recoupling experiments that yielded well-resolved (13)C-(15)N, (13)C-(13)C, and (1)H-(15)N 2D, 3D, and 4D MAS spectra, all of which show cross-peak doubling. Interhelical distances were measured using mixed (15)N/(13)C labeling and with deuterated protein, MAS at ωr/2π = 60 kHz, ω0H/2π = 1000 MHz, and (1)H detection of methyl-methyl contacts. The experiments reveal a compact structure consisting of a tetramer composed of four transmembrane helices, in which two opposing helices are displaced and rotated in the direction of the membrane normal relative to a four-fold symmetric arrangement, yielding a two-fold symmetric structure. Side chain conformations of the important gating and pH-sensing residues W41 and H37 are found to differ markedly from four-fold symmetry. The rmsd of the structure is 0.7 Å for backbone heavy atoms and 1.1 Å for all heavy atoms. This two-fold symmetric structure is different from all of the previous structures of M2, many of which were determined in detergent and/or with shorter constructs that are not fully active. The structure has implications for the mechanism of H(+) transport since the distance between His and Trp residues on different helices is found to be short. The structure also exhibits two-fold symmetry in the vicinity of the binding site of adamantyl inhibitors, and steric constraints may explain the mechanism of the drug-resistant S31N mutation.


Subject(s)
Viral Matrix Proteins/chemistry , Dimerization , Lipid Bilayers , Protein Conformation
10.
J Biomol NMR ; 61(3-4): 299-310, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25634301

ABSTRACT

The human voltage dependent anion channel 1 (VDAC) is a 32 kDa ß-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5-0.3 ppm for (13)C line widths and <0.5 ppm (15)N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane ß-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported assignment approach and the great potential for even more complete assignment studies and de novo structure determination via (1)H detected MAS NMR.


Subject(s)
Lipid Bilayers/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Voltage-Dependent Anion Channel 1/ultrastructure , Humans , Magnetic Resonance Imaging , Micelles , Models, Molecular , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Voltage-Dependent Anion Channel 1/chemistry , Voltage-Dependent Anion Channel 1/metabolism
11.
J Am Chem Soc ; 136(17): 6313-25, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24679070

ABSTRACT

Amyloid fibrils formed from initially soluble proteins with diverse sequences are associated with an array of human diseases. In the human disorder, dialysis-related amyloidosis (DRA), fibrils contain two major constituents, full-length human ß2-microglobulin (hß2m) and a truncation variant, ΔN6 which lacks the N-terminal six amino acids. These fibrils are assembled from initially natively folded proteins with an all antiparallel ß-stranded structure. Here, backbone conformations of wild-type hß2m and ΔN6 in their amyloid forms have been determined using a combination of dilute isotopic labeling strategies and multidimensional magic angle spinning (MAS) NMR techniques at high magnetic fields, providing valuable structural information at the atomic-level about the fibril architecture. The secondary structures of both fibril types, determined by the assignment of ~80% of the backbone resonances of these 100- and 94-residue proteins, respectively, reveal substantial backbone rearrangement compared with the location of ß-strands in their native immunoglobulin folds. The identification of seven ß-strands in hß2m fibrils indicates that approximately 70 residues are in a ß-strand conformation in the fibril core. By contrast, nine ß-strands comprise the fibrils formed from ΔN6, indicating a more extensive core. The precise location and length of ß-strands in the two fibril forms also differ. The results indicate fibrils of ΔN6 and hß2m have an extensive core architecture involving the majority of residues in the polypeptide sequence. The common elements of the backbone structure of the two proteins likely facilitates their ability to copolymerize during amyloid fibril assembly.


Subject(s)
Amyloid/chemistry , Amyloid/genetics , beta 2-Microglobulin/chemistry , beta 2-Microglobulin/genetics , Amyloid/ultrastructure , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Sequence Deletion
12.
Solid State Nucl Magn Reson ; 61-62: 1-7, 2014.
Article in English | MEDLINE | ID: mdl-24837131

ABSTRACT

The interplay between peptides and lipid bilayers drives crucial biological processes. For example, a critical step in the replication cycle of enveloped viruses is the fusion of the viral membrane and host cell endosomal membrane, and these fusion events are controlled by viral fusion peptides. Thus such membrane-interacting peptides are of considerable interest as potential pharmacological targets. Deeper insight is needed into the mechanisms by which fusion peptides and other viral peptides modulate their surrounding membrane environment, and also how the particular membrane environment modulates the structure and activity of these peptides. An important step toward understanding these processes is to characterize the structure of viral peptides in environments that are as biologically relevant as possible. Solid state nuclear magnetic resonance (ssNMR) is uniquely well suited to provide atomic level information on the structure and dynamics of both membrane-associated peptides as well as the lipid bilayer itself; further ssNMR can delineate the contribution of specific membrane components, such as cholesterol, or changing cellular conditions, such as a decrease in pH on membrane-associating peptides. This paper highlights recent advances in the study of three types of membrane associated viral peptides by ssNMR to illustrate the more general power of ssNMR in addressing important biological questions involving membrane proteins.


Subject(s)
Magnetic Resonance Spectroscopy , Membrane Proteins/physiology , Peptides/physiology , Viral Proteins/physiology , Virus Diseases/virology , Humans
13.
bioRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38352316

ABSTRACT

Activation of G proteins stimulates ubiquitous intracellular signaling cascades essential for life processes. Under normal physiological conditions, nucleotide exchange is initiated upon the formation of complexes between a G protein and G protein-coupled receptor (GPCR), which facilitates exchange of bound GDP for GTP, subsequently dissociating the trimeric G protein into its Gα and Gßγ subunits. However, single point mutations in Gα circumvent nucleotide exchange regulated by GPCR-G protein interactions, leading to either loss-of-function or constitutive gain-of-function. Mutations in several Gα subtypes are closely linked to the development of multiple diseases, including several intractable cancers. We leveraged an integrative spectroscopic and computational approach to investigate the mechanisms by which seven of the most frequently observed clinically-relevant mutations in the α subunit of the stimulatory G protein result in functional changes. Variable temperature circular dichroism (CD) spectroscopy showed a bimodal distribution of thermal melting temperatures across all GαS variants. Modeling from molecular dynamics (MD) simulations established a correlation between observed thermal melting temperatures and structural changes caused by the mutations. Concurrently, saturation-transfer difference NMR (STD-NMR) highlighted variations in the interactions of GαS variants with bound nucleotides. MD simulations indicated that changes in local interactions within the nucleotide-binding pocket did not consistently align with global structural changes. This collective evidence suggests a multifaceted energy landscape, wherein each mutation may introduce distinct perturbations to the nucleotide-binding site and protein-protein interaction sites. Consequently, it underscores the importance of tailoring therapeutic strategies to address the unique challenges posed by individual mutations.

14.
Structure ; 32(5): 523-535.e5, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38401537

ABSTRACT

We leveraged variable-temperature 19F-NMR spectroscopy to compare the conformational equilibria of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR), across a range of temperatures ranging from lower temperatures typically employed in 19F-NMR experiments to physiological temperature. A2AAR complexes with partial agonists and full agonists showed large increases in the population of a fully active conformation with increasing temperature. NMR data measured at physiological temperature were more in line with functional data. This was pronounced for complexes with partial agonists, where the population of active A2AAR was nearly undetectable at lower temperature but became evident at physiological temperature. Temperature-dependent behavior of complexes with either full or partial agonists exhibited a pronounced sensitivity to the specific membrane mimetic employed. Cellular signaling experiments correlated with the temperature-dependent conformational equilibria of A2AAR in lipid nanodiscs but not in some detergents, underscoring the importance of the membrane environment in studies of GPCR function.


Subject(s)
Receptor, Adenosine A2A , Humans , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2A/chemistry , Temperature , Protein Binding , Adenosine A2 Receptor Agonists/pharmacology , Adenosine A2 Receptor Agonists/chemistry , Adenosine A2 Receptor Agonists/metabolism , Nuclear Magnetic Resonance, Biomolecular , Models, Molecular , Protein Conformation , HEK293 Cells
15.
J Biomol NMR ; 55(3): 257-65, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23334347

ABSTRACT

Resonance assignment is the first step in NMR structure determination. For magic angle spinning NMR, this is typically achieved with a set of heteronuclear correlation experiments (NCaCX, NCOCX, CONCa) that utilize SPECIFIC-CP (15)N-(13)C transfers. However, the SPECIFIC-CP transfer efficiency is often compromised by molecular dynamics and probe performance. Here we show that one-bond ZF-TEDOR (15)N-(13)C transfers provide simultaneous NCO and NCa correlations with at least as much sensitivity as SPECIFIC-CP for some non-crystalline samples. Furthermore, a 3D ZF-TEDOR-CC experiment provides heteronuclear sidechain correlations and robustness with respect to proton decoupling and radiofrequency power instabilities. We demonstrate transfer efficiencies and connectivities by application of 3D ZF-TEDOR-DARR to a model microcrystalline protein, GB1, and a less ideal system, GvpA in intact gas vesicles.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Carbon Isotopes/chemistry , Nitrogen Isotopes/chemistry , Protein Conformation
16.
J Biomol NMR ; 57(2): 129-39, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23990199

ABSTRACT

The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new "redox" approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-(13)C] acetate does not label α carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-(13)C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA-CO coupling in the backbone should improve the resolution of NCACX spectra.


Subject(s)
Bacterial Proteins/chemistry , Isotope Labeling , Nuclear Magnetic Resonance, Biomolecular , Crystallization , Mass Spectrometry , Oxidation-Reduction , Peptones , Protein Structure, Tertiary
17.
Curr Opin Pharmacol ; 72: 102364, 2023 10.
Article in English | MEDLINE | ID: mdl-37612173

ABSTRACT

G protein-coupled receptors (GPCRs) exhibit remarkable structural plasticity, which underlies their capacity to recognize a wide range of extracellular molecules and interact with intracellular partner proteins. Nuclear magnetic resonance (NMR) spectroscopy is uniquely well-suited to investigate GPCR structural plasticity, enabled by stable-isotope "probes" incorporated into receptors that inform on structure and dynamics. Progress with stable-isotope labeling methods in Eukaryotic expression systems has enabled production of native or nearly-native human receptors with varied and complementary distributions of NMR probes. These advances have opened up new avenues for investigating the roles of conformational dynamics in signaling processes, including by mapping allosteric communication networks, understanding the specificity of GPCR interactions with partner proteins and exploring the impact of membrane environments on GPCR function.


Subject(s)
Isotopes , Humans , Magnetic Resonance Spectroscopy
18.
Structure ; 31(7): 836-847.e6, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37236187

ABSTRACT

Cholesterol is a critical component of mammalian cell membranes and an allosteric modulator of G protein-coupled receptors (GPCRs), but divergent views exist on the mechanisms by which cholesterol influences receptor functions. Leveraging the benefits of lipid nanodiscs, i.e., quantitative control of lipid composition, we observe distinct impacts of cholesterol in the presence and absence of anionic phospholipids on the function-related conformational dynamics of the human A2A adenosine receptor (A2AAR). Direct receptor-cholesterol interactions drive activation of agonist-bound A2AAR in membranes containing zwitterionic phospholipids. Intriguingly, the presence of anionic lipids attenuates cholesterol's impact through direct interactions with the receptor, highlighting a more complex role for cholesterol that depends on membrane phospholipid composition. Targeted amino acid replacements at two frequently predicted cholesterol interaction sites showed distinct impacts of cholesterol at different receptor locations, demonstrating the ability to delineate different roles of cholesterol in modulating receptor signaling and maintaining receptor structural integrity.


Subject(s)
Phospholipids , Receptors, G-Protein-Coupled , Animals , Humans , Phospholipids/metabolism , Cell Membrane/metabolism , Receptors, G-Protein-Coupled/metabolism , Molecular Conformation , Cholesterol/metabolism , Molecular Dynamics Simulation , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/chemistry , Mammals/metabolism
19.
ACS Cent Sci ; 9(4): 685-695, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37122463

ABSTRACT

Protein-polymer conjugates are widely used in many clinical and industrial applications, but lack of experimental data relating protein-polymer interactions to improved protein stability prevents their rational design. Advances in synthetic chemistry have expanded the palette of polymer designs, including development of nonlinear architectures, novel monomer chemical scaffolds, and control of hydrophobicity, but more experimental data are needed to transform advances in chemistry into next generation conjugates. Using an integrative biophysical approach, we investigated the molecular basis for polymer-based thermal stabilization of a human galectin protein, Gal3C, conjugated with polymers of linear and nonlinear architectures, different degrees of polymerization, and varying hydrophobicities. Independently varying the degree of polymerization and polymer architecture enabled delineation of specific polymer properties contributing to improved protein stability. Insights from NMR spectroscopy of the polymer-conjugated Gal3C backbone revealed patterns of protein-polymer interactions shared between linear and nonlinear polymer architectures for thermally stabilized conjugates. Despite large differences in polymer chemical scaffolds, protein-polymer interactions resulting in thermal stabilization appear conserved. We observed a clear relation between polymer length and protein-polymer thermal stability shared among chemically different polymers. Our data indicate a wide range of polymers may be useful for engineering conjugate properties and provide conjugate design criteria.

20.
bioRxiv ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37905159

ABSTRACT

Protein function strongly depends on temperature, which is related to temperature-dependent changes in the equilibria of protein conformational states. We leveraged variable-temperature 19F-NMR spectroscopy to interrogate the temperature dependence of the conformational landscape of the human A2A adenosine receptor (A2AAR), a class A GPCR. Temperature-induced changes in the conformational equilibria of A2AAR in lipid nanodiscs were markedly dependent on the efficacy of bound drugs. While antagonist complexes displayed only modest changes as the temperature rose, both full and partial agonist complexes exhibited substantial increases in the active state population. Importantly, the temperature-dependent response of complexes with both full and partial agonists exhibited a pronounced sensitivity to the specific membrane mimetic employed. In striking contrast to observations within lipid nanodiscs, in detergent micelles the active state population exhibited different behavior for A2AAR complexes with both full and partial agonists. This underscores the importance of the protein environment in understanding the thermodynamics of GPCR activation.

SELECTION OF CITATIONS
SEARCH DETAIL