Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Cell ; 184(20): 5163-5178.e24, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34559985

ABSTRACT

Rift Valley fever virus (RVFV) is a zoonotic pathogen with pandemic potential. RVFV entry is mediated by the viral glycoprotein (Gn), but host entry factors remain poorly defined. Our genome-wide CRISPR screen identified low-density lipoprotein receptor-related protein 1 (mouse Lrp1/human LRP1), heat shock protein (Grp94), and receptor-associated protein (RAP) as critical host factors for RVFV infection. RVFV Gn directly binds to specific Lrp1 clusters and is glycosylation independent. Exogenous addition of murine RAP domain 3 (mRAPD3) and anti-Lrp1 antibodies neutralizes RVFV infection in taxonomically diverse cell lines. Mice treated with mRAPD3 and infected with pathogenic RVFV are protected from disease and death. A mutant mRAPD3 that binds Lrp1 weakly failed to protect from RVFV infection. Together, these data support Lrp1 as a host entry factor for RVFV infection and define a new target to limit RVFV infections.


Subject(s)
Host-Pathogen Interactions , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Rift Valley fever virus/physiology , Virus Internalization , Animals , Antibody Specificity/immunology , Base Sequence , Brain/pathology , Brain/virology , CRISPR-Cas Systems/genetics , Cell Membrane/metabolism , Cells, Cultured , Glycoproteins/metabolism , Glycosaminoglycans/metabolism , Glycosylation , Humans , LDL-Receptor Related Protein-Associated Protein/metabolism , Ligands , Low Density Lipoprotein Receptor-Related Protein-1/deficiency , Membrane Glycoproteins/metabolism , Mice , Protein Binding , Protein Denaturation , Rift Valley Fever/pathology , Rift Valley Fever/prevention & control , Rift Valley Fever/virology , Rift Valley fever virus/immunology
2.
Nat Immunol ; 23(11): 1614-1627, 2022 11.
Article in English | MEDLINE | ID: mdl-36289450

ABSTRACT

Chronic antigen exposure during viral infection or cancer promotes an exhausted T cell (Tex) state with reduced effector function. However, whether all antigen-specific T cell clones follow the same Tex differentiation trajectory remains unclear. Here, we generate a single-cell multiomic atlas of T cell exhaustion in murine chronic viral infection that redefines Tex phenotypic diversity, including two late-stage Tex subsets with either a terminal exhaustion (Texterm) or a killer cell lectin-like receptor-expressing cytotoxic (TexKLR) phenotype. We use paired single-cell RNA and T cell receptor sequencing to uncover clonal differentiation trajectories of Texterm-biased, TexKLR-biased or divergent clones that acquire both phenotypes. We show that high T cell receptor signaling avidity correlates with Texterm, whereas low avidity correlates with effector-like TexKLR fate. Finally, we identify similar clonal differentiation trajectories in human tumor-infiltrating lymphocytes. These findings reveal clonal heterogeneity in the T cell response to chronic antigen that influences Tex fates and persistence.


Subject(s)
CD8-Positive T-Lymphocytes , Virus Diseases , Humans , Mice , Animals , Receptors, Antigen, T-Cell/genetics , Cell Differentiation , Lymphocytes, Tumor-Infiltrating
3.
Nat Immunol ; 21(11): 1384-1396, 2020 11.
Article in English | MEDLINE | ID: mdl-32989327

ABSTRACT

T follicular helper (TFH) cells are critical in adaptive immune responses to pathogens and vaccines; however, what drives the initiation of their developmental program remains unclear. Studies suggest that a T cell antigen receptor (TCR)-dependent mechanism may be responsible for the earliest TFH cell-fate decision, but a critical aspect of the TCR has been overlooked: tonic TCR signaling. We hypothesized that tonic signaling influences early TFH cell development. Here, two murine TCR-transgenic CD4+ T cells, LLO56 and LLO118, which recognize the same antigenic peptide presented on major histocompatibility complex molecules but experience disparate strengths of tonic signaling, revealed low tonic signaling promotes TFH cell differentiation. Polyclonal T cells paralleled these findings, with naive Nur77 expression distinguishing TFH cell potential. Two mouse lines were also generated to both increase and decrease tonic signaling strength, directly establishing an inverse relationship between tonic signaling strength and TFH cell development. Our findings elucidate a central role for tonic TCR signaling in early TFH cell-lineage decisions.


Subject(s)
Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Animals , Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , H-2 Antigens/immunology , Immunization , Immunophenotyping , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Mice, Transgenic , Peptides/immunology
4.
Immunity ; 55(7): 1200-1215.e6, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35637103

ABSTRACT

Soon after activation, CD4+ T cells are segregated into BCL6+ follicular helper (Tfh) and BCL6- effector (Teff) T cells. Here, we explored how these subsets are maintained during chronic antigen stimulation using the mouse chronic LCMV infection model. Using single cell-transcriptomic and epigenomic analyses, we identified a population of PD-1+ TCF-1+ CD4+ T cells with memory-like features. TCR clonal tracing and adoptive transfer experiments demonstrated that these cells have self-renewal capacity and continue to give rise to both Teff and Tfh cells, thus functioning as progenitor cells. Conditional deletion experiments showed Bcl6-dependent development of these progenitors, which were essential for sustaining antigen-specific CD4+ T cell responses to chronic infection. An analogous CD4+ T cell population developed in draining lymph nodes in response to tumors. Our study reveals the heterogeneity and plasticity of CD4+ T cells during persistent antigen exposure and highlights their population dynamics through a stable, bipotent intermediate state.


Subject(s)
Antigens , T-Lymphocytes, Helper-Inducer , Adoptive Transfer , Animals , Cell Differentiation , Mice , Proto-Oncogene Proteins c-bcl-6/genetics , Stem Cells
5.
Immunity ; 54(7): 1417-1432.e7, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34004142

ABSTRACT

The transcriptional repressor ZEB2 regulates development of many cell fates among somatic, neural, and hematopoietic lineages, but the basis for its requirement in these diverse lineages is unclear. Here, we identified a 400-basepair (bp) region located 165 kilobases (kb) upstream of the Zeb2 transcriptional start site (TSS) that binds the E proteins at several E-box motifs and was active in hematopoietic lineages. Germline deletion of this 400-bp region (Zeb2Δ-165mice) specifically prevented Zeb2 expression in hematopoietic stem cell (HSC)-derived lineages. Zeb2Δ-165 mice lacked development of plasmacytoid dendritic cells (pDCs), monocytes, and B cells. All macrophages in Zeb2Δ-165 mice were exclusively of embryonic origin. Using single-cell chromatin profiling, we identified a second Zeb2 enhancer located at +164-kb that was selectively active in embryonically derived lineages, but not HSC-derived ones. Thus, Zeb2 expression in adult, but not embryonic, hematopoiesis is selectively controlled by the -165-kb Zeb2 enhancer.


Subject(s)
Enhancer Elements, Genetic/genetics , Hematopoiesis/genetics , Transcription, Genetic/genetics , Zinc Finger E-box Binding Homeobox 2/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Chromatin/genetics , Dendritic Cells/physiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Monocytes/physiology
6.
Nat Immunol ; 18(11): 1218-1227, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28945245

ABSTRACT

T cell antigen receptor (TCR) signaling in the thymus initiates positive selection, but the CD8+-lineage fate is thought to be induced by cytokines after TCR signaling has ceased, although this remains controversial and unproven. We have identified four cytokines (IL-6, IFN-γ, TSLP and TGF-ß) that did not signal via the common γ-chain (γc) receptor but that, like IL-7 and IL-15, induced expression of the lineage-specifying transcription factor Runx3d and signaled the generation of CD8+ T cells. Elimination of in vivo signaling by all six of these 'lineage-specifying cytokines' during positive selection eliminated Runx3d expression and completely abolished the generation of CD8+ single-positive thymocytes. Thus, this study proves that signaling during positive selection by lineage-specifying cytokines is responsible for all CD8+-lineage-fate 'decisions' in the thymus.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Lineage/immunology , Cytokines/immunology , Thymus Gland/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/immunology , Core Binding Factor Alpha 3 Subunit/metabolism , Cytokines/metabolism , Flow Cytometry , Gene Expression/immunology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/immunology , Thymocytes/immunology , Thymocytes/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism
7.
Nat Immunol ; 18(5): 563-572, 2017 05.
Article in English | MEDLINE | ID: mdl-28346410

ABSTRACT

Variable strengths of signaling via the T cell antigen receptor (TCR) can produce divergent outcomes, but the mechanism of this remains obscure. The abundance of the transcription factor IRF4 increases with TCR signal strength, but how this would induce distinct types of responses is unclear. We compared the expression of genes in the TH2 subset of helper T cells to enhancer occupancy by the BATF-IRF4 transcription factor complex at varying strengths of TCR stimulation. Genes dependent on BATF-IRF4 clustered into groups with distinct TCR sensitivities. Enhancers exhibited a spectrum of occupancy by the BATF-IRF4 ternary complex that correlated with the sensitivity of gene expression to TCR signal strength. DNA sequences immediately flanking the previously defined AICE motif controlled the affinity of BATF-IRF4 for direct binding to DNA. Analysis by the chromatin immunoprecipitation-exonuclease (ChIP-exo) method allowed the identification of a previously unknown high-affinity AICE2 motif at a human single-nucleotide polymorphism (SNP) of the gene encoding the immunomodulatory receptor CTLA-4 that was associated with resistance to autoimmunity. Thus, the affinity of different enhancers for the BATF-IRF4 complex might underlie divergent signaling outcomes in response to various strengths of TCR signaling.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , CTLA-4 Antigen/genetics , Enhancer Elements, Genetic/genetics , Interferon Regulatory Factors/metabolism , Multiprotein Complexes/metabolism , Receptors, Antigen, T-Cell/metabolism , Th2 Cells/physiology , Animals , Autoimmunity/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Genetic Predisposition to Disease , Humans , Mice , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Knockout , Polymorphism, Single Nucleotide , Protein Binding/genetics , Signal Transduction/genetics
8.
Cell ; 156(6): 1223-1234, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24630724

ABSTRACT

Splenic red pulp macrophages (RPM) degrade senescent erythrocytes and recycle heme-associated iron. The transcription factor SPI-C is selectively expressed by RPM and is required for their development, but the physiologic stimulus inducing Spic is unknown. Here, we report that Spic also regulated the development of F4/80(+)VCAM1(+) bone marrow macrophages (BMM) and that Spic expression in BMM and RPM development was induced by heme, a metabolite of erythrocyte degradation. Pathologic hemolysis induced loss of RPM and BMM due to excess heme but induced Spic in monocytes to generate new RPM and BMM. Spic expression in monocytes was constitutively inhibited by the transcriptional repressor BACH1. Heme induced proteasome-dependent BACH1 degradation and rapid Spic derepression. Furthermore, cysteine-proline dipeptide motifs in BACH1 that mediate heme-dependent degradation were necessary for Spic induction by heme. These findings are the first example of metabolite-driven differentiation of a tissue-resident macrophage subset and provide new insights into iron homeostasis.


Subject(s)
Cell Differentiation , DNA-Binding Proteins/metabolism , Heme/metabolism , Iron/metabolism , Monocytes/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , DNA-Binding Proteins/genetics , Female , Macrophages/metabolism , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Myeloid Cells/metabolism , Spleen/cytology , Spleen/metabolism
9.
Nature ; 607(7917): 142-148, 2022 07.
Article in English | MEDLINE | ID: mdl-35732734

ABSTRACT

The divergence of the common dendritic cell progenitor1-3 (CDP) into the conventional type 1 and type 2 dendritic cell (cDC1 and cDC2, respectively) lineages4,5 is poorly understood. Some transcription factors act in the commitment of already specified progenitors-such as BATF3, which stabilizes Irf8 autoactivation at the +32 kb Irf8 enhancer4,6-but the mechanisms controlling the initial divergence of CDPs remain unknown. Here we report the transcriptional basis of CDP divergence and describe the first requirements for pre-cDC2 specification. Genetic epistasis analysis7 suggested that Nfil3 acts upstream of Id2, Batf3 and Zeb2 in cDC1 development but did not reveal its mechanism or targets. Analysis of newly generated NFIL3 reporter mice showed extremely transient NFIL3 expression during cDC1 specification. CUT&RUN and chromatin immunoprecipitation followed by sequencing identified endogenous NFIL3 binding in the -165 kb Zeb2 enhancer8 at three sites that also bind the CCAAT-enhancer-binding proteins C/EBPα and C/EBPß. In vivo mutational analysis using CRISPR-Cas9 targeting showed that these NFIL3-C/EBP sites are functionally redundant, with C/EBPs supporting and NFIL3 repressing Zeb2 expression at these sites. A triple mutation of all three NFIL3-C/EBP sites ablated Zeb2 expression in myeloid, but not lymphoid progenitors, causing the complete loss of pre-cDC2 specification and mature cDC2 development in vivo. These mice did not generate T helper 2 (TH2) cell responses against Heligmosomoides polygyrus infection, consistent with cDC2 supporting TH2 responses to helminths9-11. Thus, CDP divergence into cDC1 or cDC2 is controlled by competition between NFIL3 and C/EBPs at the -165 kb Zeb2 enhancer.


Subject(s)
Cell Differentiation , Dendritic Cells , Enhancer Elements, Genetic , Mutation , Zinc Finger E-box Binding Homeobox 2 , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/genetics , Dendritic Cells/classification , Dendritic Cells/cytology , Dendritic Cells/pathology , Enhancer Elements, Genetic/genetics , Epistasis, Genetic , Inhibitor of Differentiation Protein 2 , Lymphocytes/cytology , Mice , Myeloid Cells/cytology , Nematospiroides dubius/immunology , Repressor Proteins , Th2 Cells/cytology , Th2 Cells/immunology , Zinc Finger E-box Binding Homeobox 2/genetics
10.
Nat Immunol ; 16(11): 1124-33, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26414766

ABSTRACT

Subsets of innate lymphoid cells (ILCs) reside in the mucosa and regulate immune responses to external pathogens. While ILCs can be phenotypically classified into ILC1, ILC2 and ILC3 subsets, the transcriptional control of commitment to each ILC lineage is incompletely understood. Here we report that the transcription factor Runx3 was essential for the normal development of ILC1 and ILC3 cells but not of ILC2 cells. Runx3 controlled the survival of ILC1 cells but not of ILC3 cells. Runx3 was required for expression of the transcription factor RORγt and its downstream target, the transcription factor AHR, in ILC3 cells. The absence of Runx3 in ILCs exacerbated infection with Citrobacter rodentium. Therefore, our data establish Runx3 as a key transcription factor in the lineage-specific differentiation of ILC1 and ILC3 cells.


Subject(s)
Core Binding Factor Alpha 3 Subunit/metabolism , Immunity, Innate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Animals , Antigens, Ly/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/immunology , Cell Lineage/immunology , Citrobacter rodentium/immunology , Citrobacter rodentium/pathogenicity , Core Binding Factor Alpha 3 Subunit/deficiency , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor beta Subunit/deficiency , Core Binding Factor beta Subunit/genetics , Core Binding Factor beta Subunit/metabolism , Enterobacteriaceae Infections/etiology , Enterobacteriaceae Infections/immunology , Interleukin-7 Receptor alpha Subunit/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Lymphocyte Subsets/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Natural Cytotoxicity Triggering Receptor 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/deficiency , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
11.
Immunity ; 48(5): 923-936.e4, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29752065

ABSTRACT

The development of T cell tolerance in the thymus requires the presentation of host proteins by multiple antigen-presenting cell (APC) types. However, the importance of transferring host antigens from transcription factor AIRE-dependent medullary thymic epithelial cells (mTECs) to bone marrow (BM) APCs is unknown. We report that antigen was primarily transferred from mTECs to CD8α+ dendritic cells (DCs) and showed that CD36, a scavenger receptor selectively expressed on CD8α+ DCs, mediated the transfer of cell-surface, but not cytoplasmic, antigens. The absence of CD8α+ DCs or CD36 altered thymic T cell selection, as evidenced by TCR repertoire analysis and the loss of allo-tolerance in murine allogeneic BM transplantation (allo-BMT) studies. Decreases in these DCs and CD36 expression in peripheral blood of human allo-BMT patients correlated with graft-versus-host disease. Our findings suggest that CD36 facilitates transfer of mTEC-derived cell-surface antigen on CD8α+ DCs to promote tolerance to host antigens during homeostasis and allo-BMT.


Subject(s)
Antigens, Surface/immunology , CD36 Antigens/immunology , Immune Tolerance/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Animals , Antigens, Surface/metabolism , Bone Marrow Transplantation , CD36 Antigens/genetics , CD36 Antigens/metabolism , CD8 Antigens/immunology , CD8 Antigens/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Mice, Inbred BALB C , Mice, Knockout , Mice, Transgenic , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Regulatory/metabolism , Thymus Gland/metabolism , Transplantation, Homologous
12.
Nature ; 594(7863): 413-417, 2021 06.
Article in English | MEDLINE | ID: mdl-33981034

ABSTRACT

Humans and their microbiota have coevolved a mutually beneficial relationship in which the human host provides a hospitable environment for the microorganisms and the microbiota provides many advantages for the host, including nutritional benefits and protection from pathogen infection1. Maintaining this relationship requires a careful immune balance to contain commensal microorganisms within the lumen while limiting inflammatory anti-commensal responses1,2. Antigen-specific recognition of intestinal microorganisms by T cells has previously been described3,4. Although the local environment shapes the differentiation of effector cells3-5 it is unclear how microbiota-specific T cells are educated in the thymus. Here we show that intestinal colonization in early life leads to the trafficking of microbial antigens from the intestine to the thymus by intestinal dendritic cells, which then induce the expansion of microbiota-specific T cells. Once in the periphery, microbiota-specific T cells have pathogenic potential or can protect against related pathogens. In this way, the developing microbiota shapes and expands the thymic and peripheral T cell repertoire, allowing for enhanced recognition of intestinal microorganisms and pathogens.


Subject(s)
Dendritic Cells/immunology , Gastrointestinal Microbiome/immunology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Aging/immunology , Animals , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , CX3C Chemokine Receptor 1/metabolism , DNA, Bacterial/analysis , Dendritic Cells/metabolism , Escherichia coli/immunology , Female , Male , Mice , Organ Specificity , Salmonella/immunology , Symbiosis/immunology , Thymus Gland/metabolism
13.
Nat Immunol ; 15(9): 884-93, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25029552

ABSTRACT

Although the transcription factor c-Myc is essential for the establishment of a metabolically active and proliferative state in T cells after priming, its expression is transient. It remains unknown how T cell activation is maintained after c-Myc expression is downregulated. Here we identified AP4 as the transcription factor that was induced by c-Myc and sustained activation of antigen-specific CD8+ T cells. Despite normal priming, AP4-deficient CD8+ T cells failed to continue transcription of a broad range of c-Myc-dependent targets. Mice lacking AP4 specifically in CD8+ T cells showed enhanced susceptibility to infection with West Nile virus. Genome-wide analysis suggested that many activation-induced genes encoding molecules involved in metabolism were shared targets of c-Myc and AP4. Thus, AP4 maintains c-Myc-initiated cellular activation programs in CD8+ T cells to control microbial infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocyte Activation/immunology , Proto-Oncogene Proteins c-myc/immunology , Transcription Factors/immunology , Animals , Mice , West Nile Fever/immunology
14.
Nat Immunol ; 15(5): 439-448, 2014 May.
Article in English | MEDLINE | ID: mdl-24681565

ABSTRACT

Molecular mechanisms that maintain lineage integrity of helper T cells are largely unknown. Here we show histone deacetylases 1 and 2 (HDAC1 and HDAC2) as crucial regulators of this process. Loss of HDAC1 and HDAC2 during late T cell development led to the appearance of major histocompatibility complex (MHC) class II-selected CD4(+) helper T cells that expressed CD8-lineage genes such as Cd8a and Cd8b1. HDAC1 and HDAC2-deficient T helper type 0 (TH0) and TH1 cells further upregulated CD8-lineage genes and acquired a CD8(+) effector T cell program in a manner dependent on Runx-CBFß complexes, whereas TH2 cells repressed features of the CD8(+) lineage independently of HDAC1 and HDAC2. These results demonstrate that HDAC1 and HDAC2 maintain integrity of the CD4 lineage by repressing Runx-CBFß complexes that otherwise induce a CD8(+) effector T cell-like program in CD4(+) T cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/metabolism , Th1 Cells/immunology , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cells, Cultured , Core Binding Factor alpha Subunits/metabolism , Core Binding Factor beta Subunit/metabolism , Cytokines/metabolism , Cytotoxicity, Immunologic/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding
15.
Immunity ; 45(3): 570-582, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27566940

ABSTRACT

B cells diversify and affinity mature their antigen receptor repertoire in germinal centers (GCs). GC B cells receive help signals during transient interaction with T cells, yet it remains unknown how these transient T-B interactions in the light zone sustain the subsequent proliferative program of selected B cells that occurs in the anatomically distant dark zone. Here, we show that the transcription factor AP4 was required for sustained GC B cell proliferation and subsequent establishment of a diverse and protective antibody repertoire. AP4 was induced by c-MYC during the T-B interactions, was maintained by T-cell-derived interleukin-21 (IL-21), and promoted repeated rounds of divisions of selected GC B cells. B-cell-specific deletion of AP4 resulted in reduced GC sizes and reduced somatic hypermutation coupled with a failure to control chronic viral infection. These results indicate that AP4 integrates T-cell-mediated selection and sustained expansion of GC B cells for humoral immunity.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Transcription Factors/immunology , Virus Diseases/immunology , Animals , Cell Proliferation/physiology , Female , Interleukins/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes/immunology
16.
Proc Natl Acad Sci U S A ; 119(33): e2204706119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35939689

ABSTRACT

Oropouche orthobunyavirus (OROV; Peribunyaviridae) is a mosquito-transmitted virus that causes widespread human febrile illness in South America, with occasional progression to neurologic effects. Host factors mediating the cellular entry of OROV are undefined. Here, we show that OROV uses the host protein low-density lipoprotein-related protein 1 (Lrp1) for efficient cellular infection. Cells from evolutionarily distinct species lacking Lrp1 were less permissive to OROV infection than cells with Lrp1. Treatment of cells with either the high-affinity Lrp1 ligand receptor-associated protein (RAP) or recombinant ectodomain truncations of Lrp1 significantly reduced OROV infection. In addition, chimeric vesicular stomatitis virus (VSV) expressing OROV glycoproteins (VSV-OROV) bound to the Lrp1 ectodomain in vitro. Furthermore, we demonstrate the biological relevance of the OROV-Lrp1 interaction in a proof-of-concept mouse study in which treatment of mice with RAP at the time of infection reduced tissue viral load and promoted survival from an otherwise lethal infection. These results with OROV, along with the recent finding of Lrp1 as an entry factor for Rift Valley fever virus, highlight the broader significance of Lrp1 in cellular infection by diverse bunyaviruses. Shared strategies for entry, such as the critical function of Lrp1 defined here, provide a foundation for the development of pan-bunyaviral therapeutics.


Subject(s)
Bunyaviridae Infections , Low Density Lipoprotein Receptor-Related Protein-1 , Orthobunyavirus , Virus Internalization , Animals , Bunyaviridae Infections/metabolism , Bunyaviridae Infections/virology , Gene Knockout Techniques , Humans , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Mice , Orthobunyavirus/physiology , South America
17.
EMBO J ; 39(18): e105246, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32974937

ABSTRACT

Tetraspanins, including CD53 and CD81, regulate a multitude of cellular processes through organizing an interaction network on cell membranes. Here, we report the crystal structure of CD53 in an open conformation poised for partner interaction. The large extracellular domain (EC2) of CD53 protrudes away from the membrane surface and exposes a variable region, which is identified by hydrogen-deuterium exchange as the common interface for CD53 and CD81 to bind partners. The EC2 orientation in CD53 is supported by an extracellular loop (EC1). At the closed conformation of CD81, however, EC2 disengages from EC1 and rotates toward the membrane, thereby preventing partner interaction. Structural simulation shows that EC1-EC2 interaction also supports the open conformation of CD81. Disrupting this interaction in CD81 impairs the accurate glycosylation of its CD19 partner, the target for leukemia immunotherapies. Moreover, EC1 mutations in CD53 prevent the chemotaxis of pre-B cells toward a chemokine that supports B-cell trafficking and homing within the bone marrow, a major CD53 function identified here. Overall, an open conformation is required for tetraspanin-partner interactions to support myriad cellular processes.


Subject(s)
Cell Movement , Precursor Cells, B-Lymphoid/metabolism , Tetraspanin 25 , Tetraspanin 28 , Animals , Antigens, CD19/chemistry , Antigens, CD19/genetics , Antigens, CD19/metabolism , Humans , Mice , Mice, Knockout , Protein Domains , Tetraspanin 25/chemistry , Tetraspanin 25/genetics , Tetraspanin 25/metabolism , Tetraspanin 28/chemistry , Tetraspanin 28/genetics , Tetraspanin 28/metabolism
18.
Int Immunol ; 35(2): 67-77, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36334059

ABSTRACT

T cells are activated by antigen and co-stimulatory receptor signaling and undergo robust proliferation and differentiation into effector cells with protective function. Such quantitatively and qualitatively amplified T cell responses are effective in controlling acute infection and are followed by contraction of the effector population and the formation of resting memory T cells for enhanced protection against previously experienced antigens. However, in the face of persistent antigen during chronic viral infection, in autoimmunity, or in the tumor microenvironment, T cells exhibit distinct responses relative to those in acute insult in several aspects, including reduced clonal expansion and impaired effector function associated with inhibitory receptor expression, a state known as exhaustion. Nevertheless, their responses to chronic infection and tumors are sustained through the establishment of hierarchical heterogeneity, which preserves the duration of the response by generating newly differentiated effector cells. In this review, we highlight recent findings on distinct dynamics of T cell responses under "exhausting" conditions and the roles of the transcription factors that support attenuated yet long-lasting T cell responses as well as the establishment of dysfunctional states.


Subject(s)
CD8-Positive T-Lymphocytes , Virus Diseases , Humans , Gene Expression Regulation , Cell Differentiation , Population Dynamics
19.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: mdl-34880136

ABSTRACT

Identification of type 1 innate lymphoid cells (ILC1s) has been problematic. The transcription factor Hobit encoded by Zfp683 has been proposed as a major driver of ILC1 programs. Using Zfp683 reporter mice, we showed that correlation of Hobit expression with ILC1s is tissue- and context-dependent. In liver and intestinal mucosa, Zfp683 expression correlated well with ILC1s; in salivary glands, Zfp683 was coexpressed with the natural killer (NK) master transcription factors Eomes and TCF1 in a unique cell population, which we call ILC1-like NK cells; during viral infection, Zfp683 was induced in conventional NK cells of spleen and liver. The impact of Zfp683 deletion on ILC1s and NK cells was also multifaceted, including a marked decrease in granzyme- and interferon-gamma (IFNγ)-producing ILC1s in the liver, slightly fewer ILC1s and more Eomes+ TCF1+ ILC1-like NK cells in salivary glands, and only reduced production of granzyme B by ILC1 in the intestinal mucosa. NK cell-mediated control of viral infection was unaffected. We conclude that Hobit has two major impacts on ILC1s: It sustains liver ILC1 numbers, while promoting ILC1 functional maturation in other tissues by controlling TCF1, Eomes, and granzyme expression.


Subject(s)
Immunity, Cellular/physiology , Immunity, Innate/physiology , Lymphocyte Subsets/classification , Lymphocyte Subsets/physiology , T-Box Domain Proteins/metabolism , Transcription Factors/metabolism , Animals , Antigens, CD , Biomarkers , Gene Deletion , Gene Expression Regulation/physiology , Granzymes/genetics , Granzymes/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Liver/metabolism , Membrane Proteins/genetics , Mice , RNA, Small Cytoplasmic/genetics , RNA, Small Cytoplasmic/metabolism , RNA-Seq , T-Box Domain Proteins/genetics , Transcription Factors/genetics
20.
Blood ; 138(24): 2526-2538, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34283887

ABSTRACT

The proliferative burst of B lymphocytes is essential for antigen receptor repertoire diversification during the development and selective expansion of antigen-specific clones during immune responses. High proliferative activity inevitably promotes oncogenesis, the risk of which is further elevated in B lymphocytes by endogenous gene rearrangement and somatic mutations. However, B-cell-derived cancers are rare, perhaps owing to putative intrinsic tumor-suppressive mechanisms. We show that c-MYC facilitates B-cell proliferation as a protumorigenic driver and unexpectedly coengages counteracting tumor suppression through its downstream factor TFAP4. TFAP4 is mutated in human lymphoid malignancies, particularly in >10% of Burkitt lymphomas, and reduced TFAP4 expression was associated with poor survival of patients with MYC-high B-cell acute lymphoblastic leukemia. In mice, insufficient TFAP4 expression accelerated c-MYC-driven transformation of B cells. Mechanistically, c-MYC suppresses the stemness of developing B cells by inducing TFAP4 and restricting self-renewal of proliferating B cells. Thus, the pursuant transcription factor cascade functions as a tumor suppressor module that safeguards against the transformation of developing B cells.


Subject(s)
B-Lymphocytes/pathology , Carcinogenesis/genetics , DNA-Binding Proteins/genetics , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors/genetics , Animals , B-Lymphocytes/metabolism , Carcinogenesis/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Humans , Leukemia, Lymphoid/genetics , Leukemia, Lymphoid/pathology , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Mice, Inbred C57BL , Mutation , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL