Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Respir Cell Mol Biol ; 70(1): 11-25, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37725486

ABSTRACT

The generation of bioactive truncated oxidized phospholipids (Tr-OxPLs) from oxidation of cell-membrane or circulating lipoproteins is a common feature of various pathological states. Scavenger receptor CD36 is involved in lipid transport and acts as a receptor for Tr-OxPLs. Interestingly, Tr-OxPLs and CD36 are involved in endothelial dysfunction-derived acute lung injury, but the precise mechanistic connections remain unexplored. In the present study, we investigated the role of CD36 in mediating pulmonary endothelial cell (EC) dysfunction caused by Tr-OxPLs. Our results demonstrated that the Tr-OxPLs KOdia-PC, Paz-PC, PGPC, PON-PC, POV-PC, and lysophosphocholine caused an acute EC barrier disruption as revealed by measurements of transendothelial electrical resistance and VE-cadherin immunostaining. More importantly, a synthetic amphipathic helical peptide, L37pA, targeting human CD36 strongly attenuated Tr-OxPL-induced EC permeability. L37pA also suppressed Tr-OxPL-induced endothelial inflammatory activation monitored by mRNA expression of inflammatory cytokines/chemokines and adhesion molecules. In addition, L37pA blocked Tr-OxPL-induced NF-κB activation and tyrosine phosphorylation of Src kinase and VE-cadherin. The Src inhibitor SU6656 attenuated KOdia-PC-induced EC permeability and inflammation, but inhibition of the Toll-like receptors (TLRs) TLR1, TLR2, TLR4, and TLR6 had no such protective effects. CD36-knockout mice were more resistant to Tr-OxPL-induced lung injury. Treatment with L37pA was equally effective in ameliorating Tr-OxPL-induced vascular leak and lung inflammation as determined by an Evans blue extravasation assay and total cell and protein content in BAL fluid. Altogether, these results demonstrate an essential role of CD36 in mediating Tr-OxPL-induced EC dysfunction and suggest a strong therapeutic potential of CD36 inhibitory peptides in mitigating lung injury and inflammation.


Subject(s)
Acute Lung Injury , Phospholipids , Animals , Mice , Humans , Phospholipids/metabolism , Acute Lung Injury/pathology , Inflammation , Peptides , Lung/pathology
2.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37511618

ABSTRACT

Here, we present evidence that caveolae-mediated endocytosis using LDLR is the pathway for SARS-CoV-2 virus internalization in the ocular cell line ARPE-19. Firstly, we found that, while Angiotensin-converting enzyme 2 (ACE2) is expressed in these cells, blocking ACE2 by antibody treatment did not prevent infection by SARS-CoV-2 spike pseudovirions, nor did antibody blockade of extracellular vimentin and other cholesterol-rich lipid raft proteins. Next, we implicated the role of cholesterol homeostasis in infection by showing that incubating cells with different cyclodextrins and oxysterol 25-hydroxycholesterol (25-HC) inhibits pseudovirion infection of ARPE-19. However, the effect of 25-HC is likely not via cholesterol biosynthesis, as incubation with lovastatin did not appreciably affect infection. Additionally, is it not likely to be an agonistic effect of 25-HC on LXR receptors, as the LXR agonist GW3965 had no significant effect on infection of ARPE-19 cells at up to 5 µM GW3965. We probed the role of endocytic pathways but determined that clathrin-dependent and flotillin-dependent rafts were not involved. Furthermore, 20 µM chlorpromazine, an inhibitor of clathrin-mediated endocytosis (CME), also had little effect. In contrast, anti-dynamin I/II antibodies blocked the entry of SARS-CoV-2 spike pseudovirions, as did dynasore, a noncompetitive inhibitor of dynamin GTPase activity. Additionally, anti-caveolin-1 antibodies significantly blocked spike pseudotyped lentiviral infection of ARPE-19. However, nystatin, a classic inhibitor of caveolae-dependent endocytosis, did not affect infection while indomethacin inhibited only at 10 µM at the 48 h time point. Finally, we found that anti-LDLR antibodies block pseudovirion infection to a similar degree as anti-caveolin-1 and anti-dynamin I/II antibodies, while transfection with LDLR-specific siRNA led to a decrease in spike pseudotyped lentiviral infection, compared to scrambled control siRNAs. Thus, we conclude that SARS-CoV-2 spike pseudovirion infection in ARPE-19 cells is a dynamin-dependent process that is primarily mediated by LDLR.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/pharmacology , Cholesterol/metabolism , Clathrin/metabolism , Dynamin II , Lipoproteins, LDL/pharmacology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/pharmacology , Virus Internalization
3.
J Biol Chem ; 297(2): 100889, 2021 08.
Article in English | MEDLINE | ID: mdl-34181944

ABSTRACT

APOBEC3s are innate single-stranded DNA cytidine-to-uridine deaminases that catalyze mutations in both pathogen and human genomes with significant roles in human disease. However, how APOBEC3s mutate a single-stranded DNA that is available momentarily during DNA transcription or replication in vivo remains relatively unknown. In this study, utilizing hepatitis B virus (HBV) viral mutations, we evaluated the mutational characteristics of individual APOBEC3s with reference to the HBV replication process through HBV whole single-strand (-)-DNA genome mutation analyses. We found that APOBEC3s induced C-to-T mutations from the HBV reverse transcription start site continuing through the whole (-)-DNA transcript to the termination site with variable efficiency, in an order of A3B >> A3G > A3H-II or A3C. A3B had a 3-fold higher mutation efficiency than A3H-II or A3C with up to 65% of all HBV genomic cytidines being converted into uridines in a single mutation event, consistent with the A3B localized hypermutation signature in cancer, namely, kataegis. On the other hand, A3C expression led to a 3-fold higher number of mutation-positive HBV genome clones, although each individual clone had a lower number of C-to-T mutations. Like A3B, A3C preferred both 5'-TC and 5'-CC sequences, but to a lesser degree. The APOBEC3-induced HBV mutations were predominantly detected in the HBV rcDNA but were not detectable in other intermediates including HBV cccDNA and pgRNA by primer extension of their PCR amplification products. These data demonstrate that APOBEC3-induced HBV genome mutations occur predominantly when the HBV RNA genome was reversely transcribed into (-)-DNA in the viral capsid.


Subject(s)
APOBEC Deaminases/metabolism , DNA, Viral/genetics , Hepatitis B virus/genetics , Hepatitis B/virology , Mutation , RNA, Viral/genetics , APOBEC Deaminases/genetics , Cell Line, Tumor , Genome, Viral , Hepatitis B/pathology , Hepatitis B virus/isolation & purification , Hepatitis B virus/pathogenicity , Humans , RNA, Viral/metabolism , Reverse Transcription
4.
Infect Immun ; 89(10): e0030121, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34097506

ABSTRACT

Recent studies suggest an anti-inflammatory protective role for class B scavenger receptor BI (SR-BI) in endotoxin-induced inflammation and sepsis. Other data, including ours, provide evidence for an alternative role of SR-BI, facilitating bacterial and endotoxin uptake and contributing to inflammation and bacterial infection. Enhanced endotoxin susceptibility of SR-BI-deficient mice due to their anti-inflammatory glucocorticoid deficiency complicates the understanding of SR-BI's role in endotoxemia/sepsis, calling for the use of alternative models. In this study, using human SR-BI (hSR-BI) and hSR-BII transgenic mice, we found that SR-BI and, to a lesser extent, its splicing variant SR-BII protect against LPS-induced lung damage. At 20 h after intratracheal LPS instillation, the extent of pulmonary inflammation and vascular leakage was significantly lower in hSR-BI and hSR-BII transgenic mice than in wild-type mice. Higher bronchoalveolar lavage fluid (BALF) inflammatory cell count and protein content and lung tissue neutrophil infiltration found in wild-type mice were associated with markedly (2 to 3 times) increased proinflammatory cytokine production compared to these parameters in transgenic mice following LPS administration. The markedly lower endotoxin levels detected in BALF of transgenic versus wild-type mice and the significantly increased BODIPY-LPS uptake observed in lungs of hSR-BI and hSR-BII mice 20 h after the i.t. LPS injection suggest that hSR-BI- and hSR-BII-mediated enhanced LPS clearance in the airways could represent the mechanism of their protective role against LPS-induced acute lung injury.


Subject(s)
Acute Lung Injury/metabolism , Lysosomal Membrane Proteins/metabolism , Receptors, Scavenger/metabolism , Scavenger Receptors, Class B/metabolism , A549 Cells , Acute Lung Injury/chemically induced , Animals , Bronchoalveolar Lavage Fluid , Cell Line, Tumor , Cytokines/metabolism , Disease Models, Animal , Endotoxemia/metabolism , Humans , Inflammation/immunology , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neutrophils/metabolism , Sepsis/metabolism
5.
Am J Transplant ; 21(4): 1477-1492, 2021 04.
Article in English | MEDLINE | ID: mdl-32627352

ABSTRACT

Allogeneic islet transplant offers a minimally invasive option for ß cell replacement in the treatment of type 1 diabetes (T1D). The CIT consortium trial of purified human pancreatic islets (PHPI) in patients with T1D after kidney transplant (CIT06), a National Institutes of Health-sponsored phase 3, prospective, open-label, single-arm pivotal trial of PHPI, was conducted in 24 patients with impaired awareness of hypoglycemia while receiving intensive insulin therapy. PHPI were manufactured using standardized processes. PHPI transplantation was effective with 62.5% of patients achieving the primary endpoint of freedom from severe hypoglycemic events and HbA1c  ≤ 6.5% or reduced by ≥ 1 percentage point at 1 year posttransplant. Median HbA1c declined from 8.1% before to 6.0% at 1 year and 6.3% at 2 and 3 years following transplant (P < .001 for all vs baseline), with related improvements in hypoglycemia awareness and glucose variability. The improved metabolic control was associated with better health-related and diabetes-related quality of life. The procedure was safe and kidney allograft function remained stable after 3 years. These results add to evidence establishing allogeneic islet transplant as a safe and effective treatment for patients with T1D and unstable glucose control despite intensive insulin treatment, supporting the indication for PHPI in the post-renal transplant setting.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Kidney Transplantation , Blood Glucose , Diabetes Mellitus, Type 1/surgery , Humans , Insulin , Prospective Studies , Quality of Life
6.
J Biol Chem ; 292(32): 13459-13479, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28637869

ABSTRACT

Apolipoprotein B mRNA-editing enzyme catalytic subunit 3 (APOBEC-3) enzymes are cytidine deaminases that are broadly and constitutively expressed. They are often up-regulated during carcinogenesis and candidate genes for causing the major single-base substitution in cancer-associated DNA mutations. Moreover, APOBEC-3s are involved in host innate immunity against many viruses. However, how APOBEC-3 mutational activity is regulated in normal and pathological conditions remains largely unknown. Heat shock protein levels are often elevated in both carcinogenesis and viral infection and are associated with DNA mutations. Here, using mutational analyses of hepatitis B virus (HBV), we found that Hsp90 stimulates deamination activity of APOBEC-3G (A3G), A3B, and A3C during co-expression in human liver HepG2 cells. Hsp90 directly stimulated A3G deamination activity when the purified proteins were used in in vitro reactions. Hsp40, -60, and -70 also had variable stimulatory effects in the cellular assay, but not in vitro Sequencing analyses further demonstrated that Hsp90 increased both A3G cytosine mutation efficiency on HBV DNA and total HBV mutation frequency. In addition, Hsp90 shifted A3G's cytosine region selection in HBV DNA and increased A3G's 5' nucleoside preference for deoxycytidine (5'-CC). Furthermore, the Hsp90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin dose dependently inhibited A3G and A3B mutational activity on HBV viral DNA. Hsp90 knockdown by siRNA or by Hsp90 active-site mutation also decreased A3G activity. These results indicate that heat shock proteins, in particular Hsp90, stimulate APOBEC-3-mediated DNA deamination activity, suggesting a potential physiological role in carcinogenesis and viral innate immunity.


Subject(s)
APOBEC-3G Deaminase/metabolism , Cytidine Deaminase/metabolism , DNA, Viral/metabolism , HSP90 Heat-Shock Proteins/metabolism , Hepatitis B virus/metabolism , Hepatocytes/metabolism , Minor Histocompatibility Antigens/metabolism , APOBEC-3G Deaminase/chemistry , APOBEC-3G Deaminase/genetics , Carcinogenesis , Cytidine/metabolism , Cytidine Deaminase/chemistry , Cytidine Deaminase/genetics , DNA Mutational Analysis , DNA, Recombinant/chemistry , DNA, Recombinant/metabolism , DNA, Viral/chemistry , Deamination , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/genetics , Hep G2 Cells , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Hepatocytes/immunology , Hepatocytes/virology , Humans , Immunity, Innate , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/genetics , Mutagenesis , Mutation Rate , Peptide Fragments/agonists , Peptide Fragments/genetics , Peptide Fragments/metabolism , Point Mutation , RNA Interference , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
7.
J Immunol ; 197(2): 611-9, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27316682

ABSTRACT

Synthetic amphipathic helical peptides (SAHPs) designed as apolipoprotein A-I mimetics are known to bind to class B scavenger receptors (SR-Bs), SR-BI, SR-BII, and CD36, receptors that mediate lipid transport and facilitate pathogen recognition. In this study, we evaluated SAHPs, selected for targeting human CD36, by their ability to attenuate LPS-induced inflammation, endothelial barrier dysfunction, and acute lung injury (ALI). L37pA, which targets CD36 and SR-BI equally, inhibited LPS-induced IL-8 secretion and barrier dysfunction in cultured endothelial cells while reducing lung neutrophil infiltration by 40% in a mouse model of LPS-induced ALI. A panel of 20 SAHPs was tested in HEK293 cell lines stably transfected with various SR-Bs to identify SAHPs with preferential selectivity toward CD36. Among several SAHPs targeting both SR-BI/BII and CD36 receptors, ELK-B acted predominantly through CD36. Compared with L37pA, 5A, and ELK SAHPs, ELK-B was most effective in reducing the pulmonary barrier dysfunction, neutrophil migration into the lung, and lung inflammation induced by LPS. We conclude that SAHPs with relative selectivity toward CD36 are more potent at inhibiting acute pulmonary inflammation and dysfunction. These data indicate that therapeutic strategies using SAHPs targeting CD36, but not necessarily mimicking all apolipoprotein A-I functions, may be considered a possible new treatment approach for inflammation-induced ALI and pulmonary edema.


Subject(s)
Acute Lung Injury/immunology , Anti-Inflammatory Agents/pharmacology , CD36 Antigens/antagonists & inhibitors , Inflammation/immunology , Acute Lung Injury/pathology , Animals , Apolipoprotein A-I/immunology , Disease Models, Animal , HEK293 Cells , Humans , Inflammation/pathology , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , Peptides/pharmacology
8.
J Immunol ; 196(7): 3135-47, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26936883

ABSTRACT

The class B scavenger receptors BI (SR-BI) and BII (SR-BII) are high-density lipoprotein receptors that recognize various pathogens, including bacteria and their products. It has been reported that SR-BI/II null mice are more sensitive than normal mice to endotoxin-induced inflammation and sepsis. Because the SR-BI/II knockout model demonstrates multiple immune and metabolic disorders, we investigated the role of each receptor in the LPS-induced inflammatory response and tissue damage using transgenic mice with pLiv-11-directed expression of human SR-BI (hSR-BI) or human SR-BII (hSR-BII). At 6 h after i.p. LPS injection, transgenic hSR-BI and hSR-BII mice demonstrated markedly higher serum levels of proinflammatory cytokines and 2- to 3-fold increased expression levels of inflammatory mediators in the liver and kidney, compared with wild-type (WT) mice. LPS-stimulated inducible NO synthase expression was 3- to 6-fold higher in the liver and kidney of both transgenic strains, although serum NO levels were similar in all mice. Despite the lower high-density lipoprotein plasma levels, both transgenic strains responded to LPS by a 5-fold increase of plasma corticosterone levels, which were only moderately lower than in WT animals. LPS treatment resulted in MAPK activation in tissues of all mice; however, the strongest response was detected for hepatic extracellular signal-regulated protein kinase 1 and 2 and kidney JNK of both transgenic mice. Histological examination of hepatic and renal tissue from LPS-challenged mice revealed more injury in hSR-BII, but not hSR-BI, transgenic mice versus WT controls. Our findings demonstrate that hSR-BII, and to a lesser extent hSR-BI, significantly increase LPS-induced inflammation and contribute to LPS-induced tissue injury in the liver and kidney, two major organs susceptible to LPS toxicity.


Subject(s)
Acute Kidney Injury/genetics , Acute Kidney Injury/immunology , CD36 Antigens/genetics , Lipopolysaccharides/immunology , Liver Diseases/genetics , Liver Diseases/immunology , Lysosomal Membrane Proteins/genetics , Receptors, Scavenger/genetics , Acute Kidney Injury/pathology , Animals , CD36 Antigens/metabolism , Cell Line , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Gene Expression , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Liver Diseases/pathology , Lysosomal Membrane Proteins/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinases/metabolism , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Organ Specificity/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Scavenger/metabolism
10.
Kidney Int ; 89(4): 809-22, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26994575

ABSTRACT

Scavenger receptor CD36 participates in lipid metabolism and inflammatory pathways important for cardiovascular disease and chronic kidney disease (CKD). Few pharmacological agents are available to slow the progression of CKD. However, apolipoprotein A-I-mimetic peptide 5A antagonizes CD36 in vitro. To test the efficacy of 5A, and to test the role of CD36 during CKD, we compared wild-type to CD36 knockout mice and wild-type mice treated with 5A, in a progressive CKD model that resembles human disease. Knockout and 5A-treated wild-type mice were protected from CKD progression without changes in blood pressure and had reductions in cardiovascular risk surrogate markers that are associated with CKD. Treatment with 5A did not further protect CD36 knockout mice from CKD progression, implicating CD36 as its main site of action. In a separate model of kidney fibrosis, 5A-treated wild-type mice had less macrophage infiltration and interstitial fibrosis. Peptide 5A exerted anti-inflammatory effects in the kidney and decreased renal expression of inflammasome genes. Thus, CD36 is a new therapeutic target for CKD and its associated cardiovascular risk factors. Peptide 5A may be a promising new agent to slow CKD progression.


Subject(s)
CD36 Antigens/antagonists & inhibitors , Peptides/therapeutic use , Renal Insufficiency, Chronic/prevention & control , Angiotensin II , Animals , Blood Pressure , Chemokine CXCL1/metabolism , Disease Models, Animal , Disease Progression , Drug Evaluation, Preclinical , Fibrosis , Fluorescent Dyes , HeLa Cells , Humans , Intercellular Signaling Peptides and Proteins , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Kidney/immunology , Kidney/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nephrectomy , Peptides/pharmacology , Renal Insufficiency, Chronic/metabolism , Ureteral Obstruction/immunology , Ureteral Obstruction/pathology
11.
J Immunol ; 188(3): 1371-80, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22205027

ABSTRACT

Class B scavenger receptors (SR-B) are lipoprotein receptors that also mediate pathogen recognition, phagocytosis, and clearance as well as pathogen-induced signaling. In this study we report that three members of the SR-B family, namely, CLA-1, CLA-2, and CD36, mediate recognition of bacteria not only through interaction with cell wall LPS but also with cytosolic chaperonin 60. HeLa cells stably transfected with any of these SR-Bs demonstrated markedly (3- to 5-fold) increased binding and endocytosis of Escherichia coli, LPS, and chaperonin 60 (GroEL) as revealed by both FACS analysis and confocal microscopy imaging. Increased pathogen (E. coli, LPS, and GroEL) binding to SR-Bs was also associated with the dose-dependent stimulation of cytokine secretion in the order of CD36 > CLA-2 > CLA-1 in HEK293 cells. Pathogen-induced IL-6-secretion was reduced in macrophages from CD36- and SR-BI/II-null mice by 40-50 and 30-40%, respectively. Intravenous GroEL administration increased plasma IL-6 and CXCL1 levels in mice. The cytokine responses were 40-60% lower in CD36(-/-) relative to wild-type mice, whereas increased cytokine responses were found in SR-BI/II(-/-) mice. While investigating the discrepancy of in vitro versus in vivo data in SR-BI/II deficiency, SR-BI/II(-/-) mice were found to respond to GroEL administration without increases in either plasma corticosterone or aldosterone as normally seen in wild-type mice. SR-BI/II(-/-) mice with mineralocorticoid replacement demonstrated an ∼40-50% reduction in CXCL1 and IL-6 responses. These results demonstrate that, by recognizing and mediating inflammatory signaling of both bacterial cell wall LPS and cytosolic GroEL, all three SR-B family members play important roles in innate immunity and host defense.


Subject(s)
Bacteria/immunology , CD36 Antigens/immunology , Inflammation/immunology , Scavenger Receptors, Class B/immunology , Signal Transduction/immunology , Animals , Chaperonin 60/immunology , Chaperonin 60/pharmacology , Cytokines/metabolism , Escherichia coli/immunology , HeLa Cells , Humans , Immunity, Innate , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Mice , Scavenger Receptors, Class B/deficiency
12.
J Immunol ; 188(6): 2749-58, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22327076

ABSTRACT

Class B scavenger receptors (SR-Bs), such as SR-BI/II or CD36, bind lipoproteins but also mediate bacterial recognition and phagocytosis. In evaluating whether blocking receptors can prevent intracellular bacterial proliferation, phagocyte cytotoxicity, and proinflammatory signaling in bacterial infection/sepsis, we found that SR-BI/II- or CD36-deficient phagocytes are characterized by a reduced intracellular bacterial survival and a lower cytokine response and were protected from bacterial cytotoxicity in the presence of antibiotics. Mice deficient in either SR-BI/II or CD36 are protected from antibiotic-treated cecal ligation and puncture (CLP)-induced sepsis, with greatly increased peritoneal granulocytic phagocyte survival (8-fold), a drastic diminution in peritoneal bacteria counts, and a 50-70% reduction in systemic inflammation (serum levels of IL-6, TNF-α, and IL-10) and organ damage relative to CLP in wild-type mice. The survival rate of CD36-deficient mice after CLP was 58% compared with 17% in control mice. When compensated for mineralocorticoid and glucocorticoid deficiency, SR-BI/II-deficient mice had nearly a 50% survival rate versus 5% in mineralo-/glucocorticoid-treated controls. Targeting SR-B receptors with L-37pA, a peptide that functions as an antagonist of SR-BI/II and CD36 receptors, also increased peritoneal granulocyte counts, as well as reduced peritoneal bacteria and bacterium-induced cytokine secretion. In the CLP mouse sepsis model, L-37pA improved survival from 6 to 27%, reduced multiple organ damage, and improved kidney function. These results demonstrate that the reduction of both SR-BI/II- and CD36-dependent bacterial invasion and inflammatory response in the presence of antibiotic treatment results in granulocyte survival and local bacterial containment, as well as reduces systemic inflammation and organ damage and improves animal survival during severe infections.


Subject(s)
CD36 Antigens/immunology , Scavenger Receptors, Class B/immunology , Sepsis/immunology , Animals , CD36 Antigens/metabolism , Disease Models, Animal , Granulocytes/immunology , Granulocytes/metabolism , Inflammation/immunology , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Phagocytosis/immunology , Scavenger Receptors, Class B/antagonists & inhibitors , Sepsis/pathology
13.
Cells ; 12(15)2023 07 26.
Article in English | MEDLINE | ID: mdl-37566016

ABSTRACT

Truncated phospholipid oxidation products (Tr-OxPL) increase in blood circulation with aging; however, their role in the severity of vascular dysfunction and bacterial lung injury in aging groups remains poorly understood. We investigated the effects of six Tr-OxPL species: KOdiA-PC, POVPC, PONPC, PGPC, Paz-PC, and Lyso-PC on endothelial dysfunction and lung inflammation caused by heat-killed Staphylococcus aureus (HKSA) in young (aged 2-4 months) and old (aged 12-18 months) mice, organotypic culture of precisely cut lung slices, and endothelial cells (mLEC) isolated from young and old mice. HKSA and Tr-OxPL combination caused a higher degree of vascular leak, the accumulation of inflammatory cells and protein in bronchoalveolar lavage, and inflammatory gene expression in old mice lungs. HKSA caused a greater magnitude of inflammatory gene activation in cell and ex vivo cultures from old mice, which was further augmented by Tr-OxPLs. L37pA peptide targeting CD36 receptor attenuated Tr-OxPL-induced endothelial cell permeability in young and old mLEC and ameliorated KOdiA-PC-induced vascular leak and lung inflammation in vivo. Finally, CD36 knockout mice showed better resistance to KOdiA-PC-induced lung injury in both age groups. These results demonstrate the aging-dependent vulnerability of pulmonary vasculature to elevated Tr-OxPL, which exacerbates bacterial lung injury. CD36 inhibition is a promising therapeutic approach for improving pneumonia outcomes in aging population.


Subject(s)
Lung Injury , Pneumonia , Animals , Mice , Phospholipids/metabolism , Endothelial Cells/metabolism , Lung Injury/metabolism , Pneumonia/metabolism , Aging
14.
Front Immunol ; 14: 1110544, 2023.
Article in English | MEDLINE | ID: mdl-37026004

ABSTRACT

Introduction: In pancreatic islet transplantation, the exact contribution of human leukocyte antigen (HLA) matching to graft survival remains unclear. Islets may be exposed to allogenic rejection but also the recurrence of type 1 diabetes (T1D). We evaluated the HLA-DR matching, including the impact of diabetogenic HLA-DR3 or HLA-DR4 matches. Methods: We retrospectively examined the HLA profile in 965 transplant recipients and 2327 islet donors. The study population was obtained from patients enrolled in the Collaborative Islet Transplant Registry. We then identified 87 recipients who received a single-islet infusion. Islet-kidney recipients, 2nd islet infusion, and patients with missing data were excluded from the analysis (n=878). Results: HLA-DR3 and HLA-DR4 were present in 29.7% and 32.6% of T1D recipients and 11.6% and 15.8% of the donors, respectively. We identified 52 T1D islet recipients mismatched for HLA-DR (group A), 11 with 1 or 2 HLA-DR-matches but excluding HLA-DR3 and HLA- DR4 (group B), and 24 matched for HLA-DR3 or HLA-DR4 (group C). Insulin-independence was maintained in a significantly higher percentage of group B recipients from year one through five post-transplantation (p<0.01). At five-year post-transplantation, 78% of group B was insulin-independent compared to 24% (group A) and 35% (group C). Insulin-independence correlated with significantly better glycemic control (HbA1c <7%), fasting blood glucose, and reduced severe hypoglycemic events. Matching HLA-A-B-DR (≥3) independently of HLA- DR3 or HLA-DR4 matching did not improve graft survival. Conclusion: This study suggests that matching HLA-DR but excluding the diabetogenic HLA-DR3 and/or 4 is a significant predictor for long-term islet survival.


Subject(s)
Diabetes Mellitus, Type 1 , Histocompatibility Testing , Islets of Langerhans Transplantation , Humans , HLA-DR3 Antigen , HLA-DR4 Antigen/analysis , Insulin , Retrospective Studies
15.
JCI Insight ; 8(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37698922

ABSTRACT

BACKGROUND: Oxidized apolipoprotein B (oxLDL) and oxidized ApoA-I (oxHDL) are proatherogenic. Their prognostic value for assessing high-risk plaques by coronary computed tomography angiography (CCTA) is missing. METHODS: In a prospective, observational study, 306 participants with cardiovascular disease (CVD) had extensive lipoprotein profiling. Proteomics analysis was performed on isolated oxHDL, and atherosclerotic plaque assessment was accomplished by quantitative CCTA. RESULTS: Patients were predominantly White, overweight men (58.5%) on statin therapy (43.5%). Increase in LDL-C, ApoB, small dense LDL-C (P < 0.001 for all), triglycerides (P = 0.03), and lower HDL function were observed in the high oxLDL group. High oxLDL associated with necrotic burden (NB; ß = 0.20; P < 0.0001) and fibrofatty burden (FFB; ß = 0.15; P = 0.001) after multivariate adjustment. Low oxHDL had a significant reverse association with these plaque characteristics. Plasma oxHDL levels better predicted NB and FFB after adjustment (OR, 2.22; 95% CI, 1.27-3.88, and OR, 2.80; 95% CI, 1.71-4.58) compared with oxLDL and HDL-C. Interestingly, oxHDL associated with fibrous burden (FB) change over 3.3 years (ß = 0.535; P = 0.033) when compared with oxLDL. Combined Met136 mono-oxidation and Trp132 dioxidation of HDL showed evident association with coronary artery calcium score (r = 0.786; P < 0.001) and FB (r = 0.539; P = 0.012) in high oxHDL, whereas Met136 mono-oxidation significantly associated with vulnerable plaque in low oxHDL. CONCLUSION: Our findings suggest that the investigated oxidized lipids are associated with high-risk coronary plaque features and progression over time in patients with CVD. CLINICALTRIALS: gov NCT01621594. FUNDING: National Heart, Lung, and Blood Institute at the NIH Intramural Research Program.


Subject(s)
Cardiovascular Diseases , Plaque, Atherosclerotic , Humans , Male , Apolipoprotein A-I , Apolipoproteins B , Cholesterol, LDL , Plaque, Atherosclerotic/diagnostic imaging , Prospective Studies
16.
Diabetes ; 72(6): 677-689, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37125945

ABSTRACT

Cystic fibrosis (CF) is a recessive disorder arising from mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR is expressed in numerous tissues, with high expression in the airways, small and large intestine, pancreatic and hepatobiliary ducts, and male reproductive tract. CFTR loss in these tissues disrupts regulation of salt, bicarbonate, and water balance across their epithelia, resulting in a systemic disorder with progressive organ dysfunction and damage. Pancreatic exocrine damage ultimately manifests as pancreatic exocrine insufficiency that begins as early as infancy. Pancreatic remodeling accompanies this early damage, during which abnormal glucose tolerance can be observed in toddlers. With increasing age, however, insulin secretion defects progress such that CF-related diabetes (CFRD) occurs in 20% of teens and up to half of adults with CF. The relevance of CFRD is highlighted by its association with increased morbidity, mortality, and patient burden. While clinical research on CFRD has greatly assisted in the care of individuals with CFRD, key knowledge gaps on CFRD pathogenesis remain. Furthermore, the wide use of CFTR modulators to restore CFTR activity is changing the CFRD clinical landscape and the field's understanding of CFRD pathogenesis. For these reasons, the National Institute of Diabetes and Digestive and Kidney Diseases and the Cystic Fibrosis Foundation sponsored a CFRD Scientific Workshop, 23-25 June 2021, to define knowledge gaps and needed research areas. This article describes the findings from this workshop and plots a path for CFRD research that is needed over the next decade.


Subject(s)
Cystic Fibrosis , Diabetes Mellitus , Glucose Intolerance , Adult , Adolescent , Male , Humans , Cystic Fibrosis/complications , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Diabetes Mellitus/etiology , Diabetes Mellitus/genetics , Research
17.
Diabetes Care ; 46(6): 1112-1123, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37125948

ABSTRACT

Cystic fibrosis (CF) is a recessive disorder arising from mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR is expressed in numerous tissues, with high expression in the airways, small and large intestine, pancreatic and hepatobiliary ducts, and male reproductive tract. CFTR loss in these tissues disrupts regulation of salt, bicarbonate, and water balance across their epithelia, resulting in a systemic disorder with progressive organ dysfunction and damage. Pancreatic exocrine damage ultimately manifests as pancreatic exocrine insufficiency that begins as early as infancy. Pancreatic remodeling accompanies this early damage, during which abnormal glucose tolerance can be observed in toddlers. With increasing age, however, insulin secretion defects progress such that CF-related diabetes (CFRD) occurs in 20% of teens and up to half of adults with CF. The relevance of CFRD is highlighted by its association with increased morbidity, mortality, and patient burden. While clinical research on CFRD has greatly assisted in the care of individuals with CFRD, key knowledge gaps on CFRD pathogenesis remain. Furthermore, the wide use of CFTR modulators to restore CFTR activity is changing the CFRD clinical landscape and the field's understanding of CFRD pathogenesis. For these reasons, the National Institute of Diabetes and Digestive and Kidney Diseases and the Cystic Fibrosis Foundation sponsored a CFRD Scientific Workshop, 23-25 June 2021, to define knowledge gaps and needed research areas. This article describes the findings from this workshop and plots a path for CFRD research that is needed over the next decade.


Subject(s)
Cystic Fibrosis , Diabetes Mellitus , Glucose Intolerance , Adult , Adolescent , Male , Humans , Cystic Fibrosis/complications , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Diabetes Mellitus/diagnosis , Glucose Intolerance/complications , Research
18.
RNA ; 16(5): 1040-52, 2010 May.
Article in English | MEDLINE | ID: mdl-20348446

ABSTRACT

APOBEC-1 overexpression in liver has been shown to effectively reduce apoB-100 levels. However, nonspecific hypermutation and liver tumor formation potentially related to hypermutation in transgenic animals compromise its potential use for gene therapy. In studying apoB mRNA editing regulation, we found that the core editing auxiliary factor ACF dose-dependently increases APOBEC-1 nonspecific hypermutation and specific editing with variable site sensitivity. Overexpression of APOBEC-1 together with ACF in human hepatic HepG2 cells hypermutated apoB mRNAs 20%-65% at sites 6639, 6648, 6655, 6762, 6802, and 6845, in addition to the normal 90% editing at 6666. The hypermutation activity of APOBEC-1 was decreased to background levels by a single point APOBEC-1 mutation of P29F or E181Q, while 50% of wild-type control editing at the normal site was retained. The hypermutations on both apoB and novel APOBEC-1 target 1 (NAT1) mRNA were also decreased to background levels with P29F and E181Q mutants in rat liver primary culture cells. The loss of hypermutation with the mutants was associated with significantly decreased APOBEC-1/ACF interaction. These data suggest that nonspecific hypermutation induced by overexpressing APOBEC-1 can be virtually eliminated by site-specific mutation, while maintaining specific editing activity at the normal site, reopening the potential use of APOBEC-1 gene therapy for hyperlipidemia.


Subject(s)
Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Mutation , APOBEC-1 Deaminase , Amino Acid Substitution , Animals , Apolipoproteins B/genetics , Arylamine N-Acetyltransferase/chemistry , Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Base Sequence , Cell Line , Cells, Cultured , Cytidine Deaminase/chemistry , DNA Primers/genetics , Gene Expression , Hepatocytes/metabolism , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mutagenesis, Site-Directed , RNA Editing , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
19.
Diabetes Care ; 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36250905

ABSTRACT

OBJECTIVE: To determine long-term outcomes for islet-alone and islet-after-kidney transplantation in adults with type 1 diabetes complicated by impaired awareness of hypoglycemia. RESEARCH DESIGN AND METHODS: This was a prospective interventional and observational cohort study of islet-alone (n = 48) and islet-after-kidney (n = 24) transplant recipients followed for up to 8 years after intraportal infusion of one or more purified human pancreatic islet products under standardized immunosuppression. Outcomes included duration of islet graft survival (stimulated C-peptide ≥0.3 ng/mL), on-target glycemic control (HbA1c <7.0%), freedom from severe hypoglycemia, and insulin independence. RESULTS: Of the 48 islet-alone and 24 islet-after-kidney transplantation recipients, 26 and 8 completed long-term follow-up with islet graft function, 15 and 7 withdrew from follow-up with islet graft function, and 7 and 9 experienced islet graft failure, respectively. Actuarial islet graft survival at median and final follow-up was 84% and 56% for islet-alone and 69% and 49% for islet-after-kidney (P = 0.007) with 77% and 49% of islet-alone and 57% and 35% of islet-after-kidney transplantation recipients maintaining posttransplant HbA1c <7.0% (P = 0.0017); freedom from severe hypoglycemia was maintained at >90% in both cohorts. Insulin independence was achieved by 74% of islet-alone and islet-after-kidney transplantation recipients, with more than one-half maintaining insulin independence during long-term follow-up. Kidney function remained stable during long-term follow-up in both cohorts, and rates of sensitization against HLA were low. Severe adverse events occurred at 0.31 per patient-year for islet-alone and 0.43 per patient-year for islet-after-kidney transplantation. CONCLUSIONS: Islet transplantation results in durable islet graft survival permitting achievement of glycemic targets in the absence of severe hypoglycemia for most appropriately indicated recipients having impaired awareness of hypoglycemia, with acceptable safety of added immunosuppression for both islet-alone and islet-after-kidney transplantation.

20.
J Biol Chem ; 285(11): 8492-506, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20075072

ABSTRACT

Serum amyloid A (SAA) is a major acute phase protein involved in multiple physiological and pathological processes. This study provides experimental evidence that CD36, a phagocyte class B scavenger receptor, functions as a novel SAA receptor mediating SAA proinflammatory activity. The uptake of Alexa Fluor 488 SAA as well as of other well established CD36 ligands was increased 5-10-fold in HeLa cells stably transfected with CD36 when compared with mock-transfected cells. Unlike other apolipoproteins that bind to CD36, only SAA induced a 10-50-fold increase of interleukin-8 secretion in CD36-overexpressing HEK293 cells when compared with control cells. SAA-mediated effects were thermolabile, inhibitable by anti-SAA antibody, and also neutralized by association with high density lipoprotein but not by association with bovine serum albumin. SAA-induced cell activation was inhibited by a CD36 peptide based on the CD36 hexarelin-binding site but not by a peptide based on the thrombospondin-1-binding site. A pronounced reduction (up to 60-75%) of SAA-induced pro-inflammatory cytokine secretion was observed in cd36(-/-) rat macrophages and Kupffer cells when compared with wild type rat cells. The results of the MAPK phosphorylation assay as well as of the studies with NF-kappaB and MAPK inhibitors revealed that two MAPKs, JNK and to a lesser extent ERK1/2, primarily contribute to elevated cytokine production in CD36-overexpressing HEK293 cells. In macrophages, four signaling pathways involving NF-kappaB and three MAPKs all appeared to contribute to SAA-induced cytokine release. These observations indicate that CD36 is a receptor mediating SAA binding and SAA-induced pro-inflammatory cytokine secretion predominantly through JNK- and ERK1/2-mediated signaling.


Subject(s)
CD36 Antigens/metabolism , MAP Kinase Signaling System/physiology , Serum Amyloid A Protein/metabolism , Animals , Binding Sites , CD36 Antigens/chemistry , CD36 Antigens/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Fluorescent Dyes , HeLa Cells , Humans , Iodine Radioisotopes , JNK Mitogen-Activated Protein Kinases/metabolism , Kidney/cytology , Kupffer Cells/metabolism , Macrophages/metabolism , Male , Mice , Mice, Mutant Strains , Oligopeptides/metabolism , Phosphorylation/physiology , Protein Structure, Tertiary , Rats , Rats, Inbred WKY , Thrombospondin 1/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL