Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Bioessays ; 45(11): e2300123, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37625014

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and primarily signal through two main effector proteins: G proteins and ß-arrestins. Many agonists of GPCRs promote "biased" responses, in which different cellular signaling pathways are activated with varying efficacies. The mechanisms underlying biased signaling have not been fully elucidated, with many potential "hidden variables" that regulate this behavior. One contributor is "location bias," which refers to the generation of unique signaling cascades from a given GPCR depending upon the cellular location at which the receptor is signaling. Here, we review evidence that GPCRs are expressed at and traffic to various subcellular locations and discuss how location bias can impact the pharmacologic properties and characterization of GPCR agonists. We also evaluate how differences in subcellular environments can modulate GPCR signaling, highlight the physiological significance of subcellular GPCR signaling, and discuss the therapeutic potential of exploiting GPCR location bias.

2.
Am J Physiol Cell Physiol ; 322(5): C887-C895, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35196164

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and are the target of approximately one-third of all Food and Drug Administration (FDA)-approved pharmaceutical drugs. GPCRs interact with many transducers, such as heterotrimeric G proteins, GPCR kinases (GRKs), and ß-arrestins. Recent experiments have demonstrated that some ligands can activate distinct effector proteins over others, a phenomenon termed "biased agonism." These discoveries have raised the potential of developing drugs which preferentially activate therapeutic signaling pathways over those that lead to deleterious side effects. However, to date, only one biased GPCR therapeutic has received FDA approval and many others have either failed to meet their specified primary end points and or demonstrate superiority over currently available treatments. In addition, there is a lack of understanding regarding how biased agonism measured at a GPCR leads to specific downstream physiological responses. Here, we briefly summarize the history and current status of biased agonism at GPCRs and suggest adoption of a "systems pharmacology" approach upon which to develop GPCR-targeted drugs that demonstrate heightened therapeutic efficacy with improved side effect profiles.


Subject(s)
Network Pharmacology , Receptors, G-Protein-Coupled , Ligands , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , beta-Arrestins/metabolism
3.
Sci Signal ; 17(823): eadd9139, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38349966

ABSTRACT

Some G protein-coupled receptors (GPCRs) demonstrate biased signaling such that ligands of the same receptor exclusively or preferentially activate certain downstream signaling pathways over others. This phenomenon may result from ligand-specific receptor phosphorylation by GPCR kinases (GRKs). GPCR signaling can also exhibit location bias because GPCRs traffic to and signal from subcellular compartments in addition to the plasma membrane. Here, we investigated whether GRKs contributed to location bias in GPCR signaling. GRKs translocated to endosomes after stimulation of the chemokine receptor CXCR3 or other GPCRs in cultured cells. GRK2, GRK3, GRK5, and GRK6 showed distinct patterns of recruitment to the plasma membrane and to endosomes depending on the identity of the biased ligand used to activate CXCR3. Analysis of engineered forms of GRKs that localized to either the plasma membrane or endosomes demonstrated that biased CXCR3 ligands elicited different signaling profiles that depended on the subcellular location of the GRK. Each GRK exerted a distinct effect on the regulation of CXCR3 engagement of ß-arrestin, internalization, and activation of the downstream effector kinase ERK. Our work highlights a role for GRKs in location-biased GPCR signaling and demonstrates the complex interactions between ligands, GRKs, and cellular location that contribute to biased signaling.


Subject(s)
G-Protein-Coupled Receptor Kinases , Signal Transduction , Ligands , Signal Transduction/physiology , G-Protein-Coupled Receptor Kinases/genetics , G-Protein-Coupled Receptor Kinases/metabolism , Phosphorylation , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism
4.
bioRxiv ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39386521

ABSTRACT

ß-arrestins are multifunctional intracellular proteins that regulate the desensitization, internalization and signaling of over 800 different G protein-coupled receptors (GPCRs) and interact with a diverse array of cellular partners 1,2 . Beyond the plasma membrane, GPCRs can initiate unique signaling cascades from various subcellular locations, a phenomenon known as "location bias" 3,4 . Here, we investigate how ß-arrestins direct location-biased signaling of the angiotensin II type I receptor (AT1R). Using novel bioluminescence resonance energy transfer (BRET) conformational biosensors and extracellular signal-regulated kinase (ERK) activity reporters, we reveal that in response to the endogenous agonist Angiotensin II and the ß-arrestin-biased agonist TRV023, ß-arrestin 1 and ß-arrestin 2 adopt distinct conformations across different subcellular locations, which are intricately linked to differential ERK activation profiles. We also uncover a population of receptor-free catalytically activated ß-arrestins in the plasma membrane that exhibits insensitivity to different agonists and promotes ERK activation on the plasma membrane independent of G proteins. These findings deepen our understanding of GPCR signaling complexity and also highlight the nuanced roles of ß-arrestins beyond traditional G protein pathways.

5.
bioRxiv ; 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38410489

ABSTRACT

The canonical paradigm of GPCR signaling recognizes G proteins and ß-arrestins as the two primary transducers that promote GPCR signaling. Recent evidence suggests the atypical chemokine receptor 3 (ACKR3) does not couple to G proteins, and ß-arrestins are dispensable for some of its functions. Here, we employed proximity labeling to identify proteins that interact with ACKR3 in cells devoid of ß-arrestin. We identified proteins involved in the endocytic machinery and evaluated a subset of proteins conserved across several GPCR-based proximity labeling experiments. We discovered that the bone morphogenic protein 2-inducible kinase (BMP2K) interacts with many different GPCRs with varying dependency on ß-arrestin. Together, our work highlights the existence of modulators that can act independently of G proteins and ß-arrestins to regulate GPCR signaling and provides important evidence for other targets that may regulate GPCR signaling.

6.
Nat Commun ; 13(1): 5846, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36195635

ABSTRACT

Some G protein-coupled receptor (GPCR) ligands act as "biased agonists" that preferentially activate specific signaling transducers over others. Although GPCRs are primarily found at the plasma membrane, GPCRs can traffic to and signal from many subcellular compartments. Here, we determine that differential subcellular signaling contributes to the biased signaling generated by three endogenous ligands of the GPCR CXC chemokine receptor 3 (CXCR3). The signaling profile of CXCR3 changes as it traffics from the plasma membrane to endosomes in a ligand-specific manner. Endosomal signaling is critical for biased activation of G proteins, ß-arrestins, and extracellular-signal-regulated kinase (ERK). In CD8 + T cells, the chemokines promote unique transcriptional responses predicted to regulate inflammatory pathways. In a mouse model of contact hypersensitivity, ß-arrestin-biased CXCR3-mediated inflammation is dependent on receptor internalization. Our work demonstrates that differential subcellular signaling is critical to the overall biased response observed at CXCR3, which has important implications for drugs targeting chemokine receptors and other GPCRs.


Subject(s)
GTP-Binding Proteins , Receptors, CXCR3 , Animals , Chemokines/metabolism , GTP-Binding Proteins/metabolism , Ligands , Mice , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism
7.
Cell Signal ; 78: 109862, 2021 02.
Article in English | MEDLINE | ID: mdl-33249087

ABSTRACT

In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.


Subject(s)
Chemokines/metabolism , Receptors, Chemokine/metabolism , Signal Transduction , Animals , Chemokines/genetics , Humans , Ligands , Receptors, Chemokine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL