Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 51(2): 496-509, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37776502

ABSTRACT

PURPOSE: The primary aim was to evaluate whether anti-3-[18F]FACBC PET combined with conventional MRI correlated better with histomolecular diagnosis (reference standard) than MRI alone in glioma diagnostics. The ability of anti-3-[18F]FACBC to differentiate between molecular and histopathological entities in gliomas was also evaluated. METHODS: In this prospective study, patients with suspected primary or recurrent gliomas were recruited from two sites in Norway and examined with PET/MRI prior to surgery. Anti-3-[18F]FACBC uptake (TBRpeak) was compared to histomolecular features in 36 patients. PET results were then added to clinical MRI readings (performed by two neuroradiologists, blinded for histomolecular results and PET data) to assess the predicted tumor characteristics with and without PET. RESULTS: Histomolecular analyses revealed two CNS WHO grade 1, nine grade 2, eight grade 3, and 17 grade 4 gliomas. All tumors were visible on MRI FLAIR. The sensitivity of contrast-enhanced MRI and anti-3-[18F]FACBC PET was 61% (95%CI [45, 77]) and 72% (95%CI [58, 87]), respectively, in the detection of gliomas. Median TBRpeak was 7.1 (range: 1.4-19.2) for PET positive tumors. All CNS WHO grade 1 pilocytic astrocytomas/gangliogliomas, grade 3 oligodendrogliomas, and grade 4 glioblastomas/astrocytomas were PET positive, while 25% of grade 2-3 astrocytomas and 56% of grade 2-3 oligodendrogliomas were PET positive. Generally, TBRpeak increased with malignancy grade for diffuse gliomas. A significant difference in PET uptake between CNS WHO grade 2 and 4 gliomas (p < 0.001) and between grade 3 and 4 gliomas (p = 0.002) was observed. Diffuse IDH wildtype gliomas had significantly higher TBRpeak compared to IDH1/2 mutated gliomas (p < 0.001). Adding anti-3-[18F]FACBC PET to MRI improved the accuracy of predicted glioma grades, types, and IDH status, and yielded 13.9 and 16.7 percentage point improvement in the overall diagnoses for both readers, respectively. CONCLUSION: Anti-3-[18F]FACBC PET demonstrated high uptake in the majority of gliomas, especially in IDH wildtype gliomas, and improved the accuracy of preoperatively predicted glioma diagnoses. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT04111588, URL: https://clinicaltrials.gov/study/NCT04111588.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Oligodendroglioma , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Prospective Studies , Neoplasm Recurrence, Local , Glioma/diagnostic imaging , Glioma/pathology , Positron-Emission Tomography/methods , Magnetic Resonance Imaging
2.
Cereb Cortex ; 33(11): 7100-7119, 2023 05 24.
Article in English | MEDLINE | ID: mdl-36790738

ABSTRACT

This study investigated how proactive and reactive cognitive control processing in the brain was associated with habitual sleep health. BOLD fMRI data were acquired from 81 healthy adults with normal sleep (41 females, age 20.96-39.58 years) during a test of cognitive control (Not-X-CPT). Sleep health was assessed in the week before MRI scanning, using both objective (actigraphy) and self-report measures. Multiple measures indicating poorer sleep health-including later/more variable sleep timing, later chronotype preference, more insomnia symptoms, and lower sleep efficiency-were associated with stronger and more widespread BOLD activations in fronto-parietal and subcortical brain regions during cognitive control processing (adjusted for age, sex, education, and fMRI task performance). Most associations were found for reactive cognitive control activation, indicating that poorer sleep health is linked to a "hyper-reactive" brain state. Analysis of time-on-task effects showed that, with longer time on task, poorer sleep health was predominantly associated with increased proactive cognitive control activation, indicating recruitment of additional neural resources over time. Finally, shorter objective sleep duration was associated with lower BOLD activation with time on task and poorer task performance. In conclusion, even in "normal sleepers," relatively poorer sleep health is associated with altered cognitive control processing, possibly reflecting compensatory mechanisms and/or inefficient neural processing.


Subject(s)
Brain , Sleep Wake Disorders , Female , Humans , Adult , Young Adult , Brain/diagnostic imaging , Brain/physiology , Sleep/physiology , Cognition/physiology , Executive Function/physiology , Magnetic Resonance Imaging
3.
Neuroimage ; 266: 119816, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36528311

ABSTRACT

Preterm birth with very low birth weight (VLBW) confers heightened risk for perinatal brain injury and long-term cognitive deficits, including a reduction in IQ of up to one standard deviation. Persisting gray and white matter aberrations have been documented well into adolescence and adulthood in preterm born individuals. What has not been documented so far is a plausible causal link between reductions in cortical surface area or subcortical brain structure volumes, and the observed reduction in IQ. The NTNU Low Birth Weight in a Lifetime Perspective study is a prospective longitudinal cohort study, including a preterm born VLBW group (birthweight ≤1500 g) and a term born control group. Structural magnetic resonance imaging data were obtained from 38 participants aged 19, born preterm with VLBW, and 59 term-born peers. The FreeSurfer software suite was used to obtain measures of cortical thickness, cortical surface area, and subcortical brain structure volumes. Cognitive ability was estimated using the Wechsler Adult Intelligence Scale, 3rd Edition, including four IQ-indices: Verbal comprehension, Working memory, Perceptual organization, and Processing speed. Statistical mediation analyses were employed to test for indirect effects of preterm birth with VLBW on IQ, mediated by atypical brain structure. The mediation analyses revealed negative effects of preterm birth with VLBW on IQ that were partially mediated by reduced surface area in multiple regions of frontal, temporal, parietal and insular cortex, and by reductions in several subcortical brain structure volumes. The analyses did not yield sufficient evidence of mediation effects of cortical thickness on IQ. This is, to our knowledge, the first time a plausible causal relationship has been established between regional cortical area reductions, as well as reductions in specific subcortical and cerebellar structures, and general cognitive ability in preterm born survivors with VLBW.


Subject(s)
Premature Birth , Female , Adolescent , Humans , Infant, Newborn , Young Adult , Adult , Longitudinal Studies , Prospective Studies , Brain/diagnostic imaging , Infant, Very Low Birth Weight , Magnetic Resonance Imaging
4.
Hum Brain Mapp ; 44(2): 691-709, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36189786

ABSTRACT

Whether head size and/or biological sex influence proxies of white matter (WM) microstructure such as fractional anisotropy (FA) and mean diffusivity (MD) remains controversial. Diffusion tensor imaging (DTI) indices are also associated with age, but there are large discrepancies in the spatial distribution and timeline of age-related differences reported. The aim of this study was to evaluate the associations between intracranial volume (ICV), sex, and age and DTI indices from WM in a population-based study of healthy individuals (n = 812) aged 50-66 in the Nord-Trøndelag health survey. Semiautomated tractography and tract-based spatial statistics (TBSS) analyses were performed on the entire sample and in an ICV-matched sample of men and women. The tractography results showed a similar positive association between ICV and FA in all major WM tracts in men and women. Associations between ICV and MD, radial diffusivity and axial diffusivity were also found, but to a lesser extent than FA. The TBSS results showed that both men and women had areas of higher and lower FA when controlling for age, but after controlling for age and ICV only women had areas with higher FA. The ICV matched analysis also demonstrated that only women had areas of higher FA. Age was negatively associated with FA across the entire WM skeleton in the TBSS analysis, independent of both sex and ICV. Combined, these findings demonstrated that both ICV and sex contributed to variation in DTI indices and emphasized the importance of considering ICV as a covariate in DTI analysis.


Subject(s)
White Matter , Male , Middle Aged , Humans , Adult , Female , White Matter/diagnostic imaging , Diffusion Tensor Imaging/methods , Organ Size , Anisotropy , Brain/diagnostic imaging
5.
BMC Cancer ; 22(1): 1117, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36319985

ABSTRACT

PURPOSE: The aim of this prospective study was to investigate the prognostic value of metabolic tumor volume (MTV) and apparent diffusion coefficient (ADC) from baseline FDG PET/MRI compared to established clinical risk factors in terms of progression free survival (PFS) at 2 years in a cohort of diffuse large B-cell Lymphoma (DLBCL) and high-grade-B-cell lymphoma (HGBCL). METHODS: Thirty-three patients and their baseline PET/MRI examinations were included. Images were read by two pairs of nuclear medicine physicians and radiologists for defining lymphoma lesions. MTV was computed on PET, and up to six lymphoma target lesions with restricted diffusion was defined for each PET/MRI examination. Minimum ADC (ADCmin) and the corresponding mean ADC (ADCmean) from the target lesion with the lowest ADCmin were included in the analyses. For the combined PET/MRI parameters, the ratio between MTV and the target lesion with the lowest ADCmin (MTV/ADCmin) and the corresponding ADCmean (MTV/ADCmean) was calculated for each patient. Clinical, histological, and PET/MRI parameters were compared between the treatment failure and treatment response group, while survival analyses for each variable was performed by using univariate Cox regression. In case of significant variables in the Cox regression analyses, Kaplan-Meier survival analyses with log-rank test was used to study the effect of the variables on PFS. RESULTS: ECOC PS scale ≥2 (p = 0.05) and ADCmean (p = 0.05) were significantly different between the treatment failure group (n = 6) and those with treatment response (n = 27). Survival analyses showed that ADCmean was associated with PFS (p = 0.02, [HR 2.3 for 1 SD increase]), while combining MTV and ADC did not predict outcome. In addition, ECOG PS ≥2 (p = 0.01, [HR 13.3]) and histology of HGBCL (p = 0.02 [HR 7.6]) was significantly associated with PFS. CONCLUSIONS: ADCmean derived from baseline MRI could be a prognostic imaging biomarker for DLBCL and HGBCL. Baseline staging with PET/MRI could therefore give supplementary prognostic information compared to today's standard PET/CT.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Lymphoma, Non-Hodgkin , Humans , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Tumor Burden , Prognosis , Prospective Studies , Retrospective Studies , Positron-Emission Tomography/methods , Magnetic Resonance Imaging/methods , Lymphoma, Large B-Cell, Diffuse/pathology , Radiopharmaceuticals
6.
Ann Hematol ; 101(5): 1077-1088, 2022 May.
Article in English | MEDLINE | ID: mdl-35174405

ABSTRACT

The aim of the current study was to investigate the diagnostic performance of FDG PET/MR compared to PET/CT in a patient cohort including Hodgkins lymphoma, diffuse large B-cell lymphoma, and high-grade B-cell lymphoma at baseline and response assessment. Sixty-one patients were examined with FDG PET/CT directly followed by PET/MR. Images were read by two pairs of nuclear medicine physicians and radiologists. Concordance for lymphoma involvement between PET/MR and the reference standard PET/CT was assessed at baseline and response assessment. Correlation of prognostic biomarkers Deauville score, criteria of response, SUVmax, SUVpeak, and MTV was performed between PET/MR and PET/CT. Baseline FDG PET/MR showed a sensitivity of 92.5% and a specificity 97.9% compared to the reference standard PET/CT (κ 0.91) for nodal sites. For extranodal sites, a sensitivity of 80.4% and a specificity of 99.5% were found (κ 0.84). Concordance in Ann Arbor was found in 57 of 61 patients (κ 0.92). Discrepancies were due to misclassification of region and not lesion detection. In response assessment, a sensitivity of 100% and a specificity 99.9% for all sites combined were found (κ 0.92). There was a perfect agreement on Deauville scores 4 and 5 and criteria of response between the two modalities. Intraclass correlation coefficient (ICC) for SUVmax, SUVpeak, and MTV values showed excellent reliability (ICC > 0.9). FDG PET/MR is a reliable alternative to PET/CT in this patient population, both in terms of lesion detection at baseline staging and response assessment, and for quantitative prognostic imaging biomarkers.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Humans , Lymphoma, Large B-Cell, Diffuse/diagnostic imaging , Neoplasm Staging , Prognosis , Radiopharmaceuticals , Reproducibility of Results
7.
Neuroimage ; 222: 117221, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32750498

ABSTRACT

INTRODUCTION: Robust and reliable attenuation correction (AC) is a prerequisite for accurate quantification of activity concentration. In combined PET/MRI, AC is challenged by the lack of bone signal in the MRI from which the AC maps has to be derived. Deep learning-based image-to-image translation networks present itself as an optimal solution for MRI-derived AC (MR-AC). High robustness and generalizability of these networks are expected to be achieved through large training cohorts. In this study, we implemented an MR-AC method based on deep learning, and investigated how training cohort size, transfer learning, and MR input affected robustness, and subsequently evaluated the method in a clinical setup, with the overall aim to explore if this method could be implemented in clinical routine for PET/MRI examinations. METHODS: A total cohort of 1037 adult subjects from the Siemens Biograph mMR with two different software versions (VB20P and VE11P) was used. The software upgrade included updates to all MRI sequences. The impact of training group size was investigated by training a convolutional neural network (CNN) on an increasing training group size from 10 to 403. The ability to adapt to changes in the input images between software versions were evaluated using transfer learning from a large cohort to a smaller cohort, by varying training group size from 5 to 91 subjects. The impact of MRI sequence was evaluated by training three networks based on the Dixon VIBE sequence (DeepDixon), T1-weighted MPRAGE (DeepT1), and ultra-short echo time (UTE) sequence (DeepUTE). Blinded clinical evaluation relative to the reference low-dose CT (CT-AC) was performed for DeepDixon in 104 independent 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG) PET patient studies performed for suspected neurodegenerative disorder using statistical surface projections. RESULTS: Robustness increased with group size in the training data set: 100 subjects were required to reduce the number of outliers compared to a state-of-the-art segmentation-based method, and a cohort >400 subjects further increased robustness in terms of reduced variation and number of outliers. When using transfer learning to adapt to changes in the MRI input, as few as five subjects were sufficient to minimize outliers. Full robustness was achieved at 20 subjects. Comparable robust and accurate results were obtained using all three types of MRI input with a bias below 1% relative to CT-AC in any brain region. The clinical PET evaluation using DeepDixon showed no clinically relevant differences compared to CT-AC. CONCLUSION: Deep learning based AC requires a large training cohort to achieve accurate and robust performance. Using transfer learning, only five subjects were needed to fine-tune the method to large changes to the input images. No clinically relevant differences were found compared to CT-AC, indicating that clinical implementation of our deep learning-based MR-AC method will be feasible across MRI system types using transfer learning and a limited number of subjects.


Subject(s)
Brain/pathology , Dementia/pathology , Image Processing, Computer-Assisted , Neural Networks, Computer , Adult , Bone and Bones/pathology , Cohort Studies , Fluorodeoxyglucose F18 , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Positron-Emission Tomography/methods
8.
Neuroimage ; 203: 116158, 2019 12.
Article in English | MEDLINE | ID: mdl-31493533

ABSTRACT

Even though age-related white matter hyperintensities (WMH) begin to emerge in middle age, their effect on brain micro- and macrostructure in this age group is not fully elucidated. We have examined how presence of WMH and load of WMH affect regional brain volumes and microstructure in a validated, representative general population sample of 873 individuals between 50 and 66 years. Presence of WMH was determined as Fazakas grade ≥1. WMH load was WMH volume from manual tracing of WMHs divided on intracranial volume. The impact of age appropriate WMH (Fazakas grade 1) on the brain was also investigated. Major novel findings were that even the age appropriate WMH group had widespread macro- and microstructural changes in gray and white matter, showing that the mere presence of WMH, not just WMH load is an important clinical indicator of brain health. With increasing WMH load, structural changes spread centrifugally. Further, we found three major patterns of FA and MD changes related to increasing WMH load, demonstrating a heterogeneous effect on white matter microstructure, where distinct patterns were found in the proximity of the lesions, in deep white matter and in white matter near the cortex. This study also raises several questions about the onset of WMH related pathology, in particular, whether some of the aberrant brain structural and microstructural findings are present before the emergence of WMH. We also found, similar to other studies, that WMH risk factors had low explanatory power for WMH, making it unclear which factors lead to WMH.


Subject(s)
Brain/pathology , White Matter/pathology , Aged , Aging/pathology , Anisotropy , Brain/diagnostic imaging , Diffusion Tensor Imaging , Female , Humans , Male , Middle Aged , White Matter/diagnostic imaging
9.
Neuroimage ; 188: 217-227, 2019 03.
Article in English | MEDLINE | ID: mdl-30502447

ABSTRACT

Development of the cerebral cortex may be affected by aberrant white matter development. Preterm birth with very low birth weight (VLBW) has been associated with reduced fractional anisotropy of white matter and changes in cortical thickness and surface area. We use a new methodological approach to combine white and gray matter data and test the hypothesis that white matter injury is primary, and acts as a mediating factor for concomitant gray matter aberrations, in the developing VLBW brain. T1 and dMRI data were obtained from 47 young adults born preterm with VLBW and 73 term-born peers (mean age = 26). Cortical thickness was measured across the cortical mantle and compared between the groups, using the FreeSurfer software suite. White matter pathways were reconstructed with the TRACULA software and projected to their cortical end regions, where cortical thickness was averaged. In the VLBW group, cortical thickness was increased in anteromedial frontal, orbitofrontal, and occipital regions, and fractional anisotropy (FA) was reduced in frontal lobe pathways, indicating compromised white matter integrity. Statistical mediation analyses demonstrated that increased cortical thickness in the frontal regions was mediated by reduced FA in the corpus callosum forceps minor, consistent with the notion that white matter injury can disrupt frontal lobe cortical development. Combining statistical mediation analysis with pathway projection onto the cortical surface offers a powerful novel tool to investigate how cortical regions are differentially affected by white matter injury.


Subject(s)
Cerebral Cortex/pathology , Infant, Very Low Birth Weight , Premature Birth/pathology , White Matter/pathology , Adult , Anisotropy , Cerebral Cortex/growth & development , Female , Gray Matter/growth & development , Gray Matter/pathology , Humans , Male , White Matter/growth & development , White Matter/injuries
10.
J Neurosci Res ; 97(5): 568-581, 2019 05.
Article in English | MEDLINE | ID: mdl-30675907

ABSTRACT

Aims of this study were to investigate white matter (WM) and thalamus microstructure 72 hr and 3 months after mild traumatic brain injury (TBI) with diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI), and to relate DKI and DTI findings to postconcussional syndrome (PCS). Twenty-five patients (72 hr = 24; 3 months = 23) and 22 healthy controls were recruited, and DKI and DTI data were analyzed with Tract-Based Spatial Statistics (TBSS) and a region-of-interest (ROI) approach. Patients were categorized into PCS or non-PCS 3 months after injury according to the ICD-10 research criteria for PCS. In TBSS analysis, significant differences between patients and controls were seen in WM, both in the acute stage and 3 months after injury. Fractional anisotropy (FA) reductions were more widespread than kurtosis fractional anisotropy (KFA) reductions in the acute stage, while KFA reductions were more widespread than the FA reductions at 3 months, indicating the complementary roles of DKI and DTI. When comparing patients with PCS (n = 9), without PCS (n = 16), and healthy controls, in the ROI analyses, no differences were found in the acute DKI and DTI metrics. However, near-significant differences were observed for several DKI metrics obtained in WM and thalamus concurrently with symptom assessment (3 months after injury). Our findings indicate a combined utility of DKI and DTI in detecting WM microstructural alterations after mild TBI. Moreover, PCS may be associated with evolving alterations in brain microstructure, and DKI may be a promising tool to detect such changes.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Brain/diagnostic imaging , Post-Concussion Syndrome/diagnostic imaging , Adult , Anisotropy , Brain/pathology , Brain Injuries, Traumatic/pathology , Diffusion Tensor Imaging , Female , Humans , Male , Middle Aged , Post-Concussion Syndrome/pathology , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
11.
Cephalalgia ; 39(2): 173-184, 2019 02.
Article in English | MEDLINE | ID: mdl-29848110

ABSTRACT

BACKGROUND: The relationship between subcortical nuclei and headache is unclear. Most previous studies were conducted in small clinical migraine samples. In the present population-based MRI study, we hypothesized that headache sufferers exhibit reduced volume and deformation of the nucleus accumbens compared to non-sufferers. In addition, volume and deformation of the amygdala, caudate, hippocampus, pallidum, putamen and thalamus were examined. METHODS: In all, 1006 participants (50-66 years) from the third Nord-Trøndelag Health Survey, were randomly selected to undergo a brain MRI at 1.5 T. Volume and shape of the subcortical nuclei from T1 weighted 3D scans were obtained in FreeSurfer and FSL. The association with questionnaire-based headache categories (migraine and tension-type headache included) was evaluated using analysis of covariance. Individuals not suffering from headache were used as controls. Age, sex, intracranial volume and Hospital Anxiety and Depression Scale were used as covariates. RESULTS: No effect of headache status on accumbens volume and shape was present. Exploratory analyses showed significant but small differences in volume of caudate and putamen and in putamen shape between those with non-migrainous headache and the controls. A post hoc analysis showed that caudate volume was strongly associated with white matter hyperintensities. CONCLUSION: We did not confirm our hypothesis that headache sufferers have smaller volume and different shape of the accumbens compared to non-sufferers. No or only small differences in volume and shape of subcortical nuclei between headache sufferers and non-sufferers appear to exist in the general population.


Subject(s)
Brain/pathology , Gray Matter/pathology , Headache/pathology , Aged , Brain/diagnostic imaging , Cross-Sectional Studies , Female , Gray Matter/diagnostic imaging , Headache/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged
12.
J Headache Pain ; 20(1): 78, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31291903

ABSTRACT

BACKGROUND: Several studies have investigated white matter with diffusion tensor imaging (DTI) in those suffering from headache, but so far only in clinic based samples and with conflicting results. METHODS: In the present study, 1006 individuals (50-66 years) from the general population (Nord-Trøndelag Health Study) participated in an imaging study of the head at 1.5 T (HUNT-MRI). Hundred and ninety-six individuals were excluded because of errors in the data acquisition or brain pathology. Two hundred and forty-six of the remaining participants reported suffering from headache (69 from migraine and 76 from tension-type headache) the year prior to the scanning. DTI data were analysed with Tract-Based Spatial Statistics and automated tractography. Type of headache, frequency of attacks and evolution of headache were investigated for an association with white matter fractional anisotropy (FA), mean diffusivity (MD), axonal diffusivity (AD), radial diffusivity (RD) and tract volume. Correction for various demographical and clinical variables were performed. RESULTS: Headache sufferers had widespread higher white matter MD, AD and RD compared to headache free individuals (n = 277). The effect sizes were mostly small with the largest seen in those with middle-age onset headache, who also had lower white matter FA. There were no associations between white matter microstructure and attack frequency or type of headache. CONCLUSION: Middle-age onset headache may be related to a widespread process in the white matter leading to altered microstructure.


Subject(s)
Headache/diagnostic imaging , Headache/pathology , Migraine Disorders/diagnostic imaging , Migraine Disorders/pathology , White Matter/diagnostic imaging , White Matter/pathology , Adult , Aged , Anisotropy , Cross-Sectional Studies , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging/methods , Female , Humans , Male , Middle Aged
13.
Neuroimage ; 167: 419-428, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29191480

ABSTRACT

Individuals born preterm with very low birth weight (VLBW; birth weight ≤ 1500 g) are at high risk for perinatal brain injuries and deviant brain development, leading to increased chances of later cognitive, emotional, and behavioral problems. Here we investigated the neuronal underpinnings of both reactive and proactive cognitive control processes in adults with VLBW. We included 32 adults born preterm with VLBW (before 37th week of gestation) and 32 term-born controls (birth weight ≥10th percentile for gestational age) between 22 and 24 years of age that have been followed prospectively since birth. Participants performed a well-validated Not-X continuous performance test (CPT) adapted for use in a mixed block- and event-related fMRI protocol. BOLD fMRI and DTI data was acquired on a 3T scanner. Performance on the Not-X CPT was highly similar between groups. However, the VLBW group demonstrated hyper-reactive cognitive control processing and disrupted white matter organization. The hyper-reactive brain activation signature in VLBW adults was associated with lower gestational age, lower fluid intelligence score, and anxiety problems. Automated Multi-Atlas Tract Extraction (AutoMATE) analyses revealed that this disruption of normal brain function was accompanied by poorer white matter organization in the anterior thalamic radiation and the cingulum, as reflected in both reduced fractional anisotropy and increased mean diffusivity. These findings show that the preterm behavioral phenotype is associated with predominantly reactive-, rather than proactive cognitive control processing, as well as white matter abnormalities, that may underlie common difficulties that many preterm born individuals experience in everyday life.


Subject(s)
Executive Function/physiology , Human Development/physiology , Infant, Premature/physiology , Infant, Very Low Birth Weight/physiology , Intelligence/physiology , Psychomotor Performance/physiology , White Matter/pathology , Adult , Diffusion Tensor Imaging , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , White Matter/diagnostic imaging , Young Adult
14.
Neuroimage ; 130: 24-34, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26712340

ABSTRACT

Preterm birth and very low birth weight (VLBW, ≤1500 g) are worldwide problems that burden survivors with lifelong cognitive, psychological, and physical challenges. In this multimodal structural magnetic resonance imaging (MRI) and diffusion MRI (dMRI) study, we investigated differences in subcortical brain volumes and white matter tract properties in children born preterm with VLBW compared to term-born controls (mean age=8 years). Subcortical brain structure volumes and cortical thickness estimates were obtained, and fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were generated for 18 white matter tracts. We also assessed structural relationships between white matter tracts and cortical thickness of the tract endpoints. Compared to controls, the VLBW group had reduced volumes of thalamus, globus pallidus, corpus callosum, cerebral white matter, ventral diencephalon, and brain stem, while the ventricular system was larger in VLBW subjects, after controlling for age, sex, IQ, and estimated total intracranial volume. For the dMRI parameters, group differences were not significant at the whole-tract level, though pointwise analysis found shorter segments affected in forceps minor and left superior longitudinal fasciculus - temporal bundle. IQ did not correlate with subcortical volumes or dMRI measures in the VLBW group. While the deviations in subcortical volumes were substantial, there were few differences in dMRI measures between the two groups, which may reflect the influence of advances in perinatal care on white matter development.


Subject(s)
Brain/growth & development , Brain/pathology , Infant, Very Low Birth Weight/growth & development , Child , Cohort Studies , Diffusion Tensor Imaging , Female , Humans , Infant, Newborn , Magnetic Resonance Imaging , Male , White Matter/pathology
15.
J Neurosci Res ; 94(7): 623-35, 2016 07.
Article in English | MEDLINE | ID: mdl-26948154

ABSTRACT

This prospective study of traumatic brain injury (TBI) patients investigates fractional anisotropy (FA) from chronic diffusion tensor imaging (DTI) in areas corresponding to persistent and transient traumatic axonal injury (TAI) lesions detected in clinical MRI from the early phase. Thirty-eight patients (mean 24.7 [range 13-63] years of age) with moderate-to-severe TBI and 42 age- and sex-matched healthy controls were included. Patients underwent 1.5-T clinical MRI in the early phase (median 7 days), including fluid-attenuated inversion recovery (FLAIR) and T2* gradient echo (T2*GRE) sequences. TAI lesions from the early phase were characterized as nonhemorrhagic or microhemorrhagic. In the chronic phase (median 3 years), patients and controls were imaged at 3 T with FLAIR, T2*GRE, T1, and DTI sequences. TAI lesions were classified as transient or persistent. The FLAIR/T2*GRE images from the early phase were linearly registered to the FA images from the chronic phase and lesions manually segmented on the FA-registered FLAIR/T2*GRE images. For regions of interest (ROIs) from both nonhemorrhagic and microhemorrhagic lesion, we found a significant linear trend of lower mean FA from ROIs in healthy controls to ROIs in patients without either nonhemorrhagic or microhemorrhagic lesions and further to transient and finally persistent lesion ROIs (P < 0.001). Histogram analyses showed lower FA in persistent compared with transient nonhemorrhagic lesion ROIs (P < 0.001), but this was not found in microhemorrhagic lesion ROIs (P = 0.08-0.55). The demonstrated linear trend of lower FA values from healthy controls to persistent lesion ROIs was found in both nonhemorrhagic and microhemorrhagic lesions and indicates a gradual increasing disruption of the microstructure. Lower FA values in persistent compared with transient lesions were found only in nonhemorrhagic lesions. Thus, clinical MRI techniques are able to depict important aspects of white matter pathology across the stages of TBI. © 2016 Wiley Periodicals, Inc.


Subject(s)
Axons/pathology , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Adolescent , Adult , Anisotropy , Child , Chronic Disease , Diffusion Tensor Imaging , Female , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Male , Middle Aged , Multimodal Imaging , Prospective Studies , Young Adult
16.
Neuroimage ; 109: 493-504, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25592994

ABSTRACT

Individuals born preterm and at very low birth weight (birth weight ≤ 1500 g) are at an increased risk of perinatal brain injury and neurodevelopmental deficits over the long term. This study examined whether this clinical group has more problems with visual-motor integration, motor coordination, and visual perception compared to term-born controls, and related these findings to cortical surface area and thickness and white matter fractional anisotropy. Forty-seven preterm-born very low birth weight individuals and 56 term-born controls were examined at 18-22 years of age with a combined cognitive, morphometric MRI, and diffusion tensor imaging evaluation in Trondheim, Norway. Visual-motor skills were evaluated with the Beery-Buktenica Developmental Test of Visual-Motor Integration-V (VMI) copying test and its supplemental tests of motor coordination and visual perception. 3D T1-weighted MPRAGE images and diffusion tensor imaging were done at 1.5 T. Cortical reconstruction generated in FreeSurfer and voxelwise maps of fractional anisotropy calculated with Tract-Based Spatial Statistics were used to explore the relationship between MRI findings and cognitive results. Very low birth weight individuals had significantly lower scores on the copying and motor coordination tests compared with controls. In the very low birth weight group, VMI scores showed significant positive relationships with cortical surface area in widespread regions, with reductions of the superior temporal gyrus, insula, and medial occipital lobe in conjunction with the posterior ventral temporal lobe. Visual perception scores also showed positive relationships with cortical thickness in the very low birth weight group, primarily in the lateral occipito-temporo-parietal junction, the superior temporal gyrus, insula, and superior parietal regions. In the very low birth weight group, visual-motor performance correlated positively with fractional anisotropy especially in the corpus callosum, inferior fronto-occipital fasciculus bilaterally, and anterior thalamic radiation bilaterally, driven primarily by an increase in radial diffusivity. VMI scores did not demonstrate a significant relationship to cortical surface area, cortical thickness, or diffusion measures in the control group. Our results indicate that visual-motor integration problems persist into adulthood for very low birth weight individuals, which may be due to structural alterations in several specific gray-white matter networks. Visual-motor deficits appear related to reduced surface area of motor and visual cortices and disturbed connectivity in long association tracts containing visual and motor information. We conjecture that these outcomes may be due to perinatal brain injury or aberrant cortical development secondary to injury or due to very preterm birth.


Subject(s)
Brain/abnormalities , Gray Matter/pathology , Psychomotor Disorders/pathology , White Matter/pathology , Adolescent , Adult , Anisotropy , Brain/growth & development , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Female , Gray Matter/growth & development , Humans , Infant, Newborn , Infant, Premature , Infant, Very Low Birth Weight , Male , Neuropsychological Tests , Psychomotor Disorders/etiology , Visual Perception , White Matter/growth & development , Young Adult
17.
Eur J Nucl Med Mol Imaging ; 42(9): 1439-46, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25900276

ABSTRACT

UNLABELLED: One of the greatest challenges in PET/MR imaging is that of accurate MR-based attenuation correction (AC) of the acquired PET data, which must be solved if the PET/MR modality is to reach its full potential. The aim of this study was to investigate the performance of Siemens' most recent version (VB20P) of MR-based AC of head PET data, by comparing it to CT-based AC. METHODS: (18)F-FDG PET data from seven lymphoma and twelve lung cancer patients examined with a Biograph mMR PET/MR system were reconstructed with both CT-based and MR-based AC, avoiding sources of error arising when comparing PET data from different systems. The resulting images were compared quantitatively by measuring changes in mean SUV in ten different brain regions in both hemispheres, as well as the brainstem. In addition, the attenuation maps (µ maps) were compared regarding volume and localization of cranial bone. RESULTS: The UTE µ maps clearly overestimate the amount of bone in the neck, while slightly underestimating the amount of bone in the cranium, and the localization of bone in the cranial region also differ from the CT µ maps. In air/tissue interfaces in the sinuses and ears, the MRAC method struggles to correctly classify the different tissues. The misclassification of tissue is most likely caused by a combination of artefacts and the insufficiency of the UTE method to accurately separate bone. Quantitatively, this results in a combination of overestimation (0.5-3.6 %) and underestimation (2.7-5.2 %) of PET activity throughout the brain, depending on the proximity to the inaccurate regions. CONCLUSIONS: Our results indicate that the performance of the UTE method as implemented in VB20P is close to the theoretical maximum of such an MRAC method in the brain, while it does not perform satisfactorily in the neck or face/nasal area. Further improvement of the UTE MRAC or other available methods for more accurate segmentation of bone should be incorporated.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Positron-Emission Tomography , Adult , Aged , Aged, 80 and over , Algorithms , Female , Humans , Male , Middle Aged , Organ Size , Skull/anatomy & histology , Skull/diagnostic imaging , Time Factors , Tomography, X-Ray Computed
19.
EJNMMI Rep ; 8(1): 2, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38748286

ABSTRACT

BACKGROUND: This PET/MRI study compared contrast-enhanced MRI, 18F-FACBC-, and 18F-FDG-PET in the detection of primary central nervous system lymphomas (PCNSL) in patients before and after high-dose methotrexate chemotherapy. Three immunocompetent PCNSL patients with diffuse large B-cell lymphoma received dynamic 18F-FACBC- and 18F-FDG-PET/MRI at baseline and response assessment. Lesion detection was defined by clinical evaluation of contrast enhanced T1 MRI (ce-MRI) and visual PET tracer uptake. SUVs and tumor-to-background ratios (TBRs) (for 18F-FACBC and 18F-FDG) and time-activity curves (for 18F-FACBC) were assessed. RESULTS: At baseline, seven ce-MRI detected lesions were also detected with 18F-FACBC with high SUVs and TBRs (SUVmax:mean, 4.73, TBRmax: mean, 9.32, SUVpeak: mean, 3.21, TBRpeak:mean: 6.30). High TBR values of 18F-FACBC detected lesions were attributed to low SUVbackground. Baseline 18F-FDG detected six lesions with high SUVs (SUVmax: mean, 13.88). In response scans, two lesions were detected with ce-MRI, while only one was detected with 18F-FACBC. The lesion not detected with 18F-FACBC was a small atypical MRI detected lesion, which may indicate no residual disease, as this patient was still in complete remission 12 months after initial diagnosis. No lesions were detected with 18F-FDG in the response scans. CONCLUSIONS: 18F-FACBC provided high tumor contrast, outperforming 18F-FDG in lesion detection at both baseline and in response assessment. 18F-FACBC may be a useful supplement to ce-MRI in PCNSL detection and response assessment, but further studies are required to validate these findings. Trial registration ClinicalTrials.gov. Registered 15th of June 2017 (Identifier: NCT03188354, https://clinicaltrials.gov/study/NCT03188354 ).

20.
Sci Rep ; 14(1): 2624, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38297018

ABSTRACT

Individuals born with very low birth weight (VLBW; < 1500 g) have a higher risk of reduced visual function and brain alterations. In a longitudinal cohort study, we assessed differences in visual outcomes and diffusion metrics from diffusion tensor imaging (DTI) at 3 tesla in the visual white matter pathway and primary visual cortex at age 26 in VLBW adults versus controls and explored whether DTI metrics at 26 years was associated with visual outcomes at 32 years. Thirty-three VLBW adults and 50 term-born controls was included in the study. Visual outcomes included best corrected visual acuity, contrast sensitivity, P100 latency, and retinal nerve fibre layer thickness. Mean diffusivity, axial diffusivity, radial diffusivity, and fractional anisotropy was extracted from seven regions of interest in the visual pathway: splenium, genu, and body of corpus callosum, optic radiations, lateral geniculate nucleus, inferior-fronto occipital fasciculus, and primary visual cortex. On average the VLBW group had lower contrast sensitivity, a thicker retinal nerve fibre layer and higher axial diffusivity and radial diffusivity in genu of corpus callosum and higher radial diffusivity in optic radiations than the control group. Higher fractional anisotropy in corpus callosum areas were associated with better visual function in the VLBW group but not the control group.


Subject(s)
White Matter , Infant, Newborn , Adult , Humans , White Matter/diagnostic imaging , Diffusion Tensor Imaging/methods , Longitudinal Studies , Brain , Infant, Very Low Birth Weight/physiology , Anisotropy
SELECTION OF CITATIONS
SEARCH DETAIL