Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Am J Hum Genet ; 108(10): 1852-1865, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34559995

ABSTRACT

Genome-wide association studies (GWASs) have discovered 20 risk loci in the human genome where germline variants associate with risk of pancreatic ductal adenocarcinoma (PDAC) in populations of European ancestry. Here, we fine-mapped one such locus on chr16q23.1 (rs72802365, p = 2.51 × 10-17, OR = 1.36, 95% CI = 1.31-1.40) and identified colocalization (PP = 0.87) with aberrant exon 5-7 CTRB2 splicing in pancreatic tissues (pGTEx = 1.40 × 10-69, ßGTEx = 1.99; pLTG = 1.02 × 10-30, ßLTG = 1.99). Imputation of a 584 bp structural variant overlapping exon 6 of CTRB2 into the GWAS datasets resulted in a highly significant association with pancreatic cancer risk (p = 2.83 × 10-16, OR = 1.36, 95% CI = 1.31-1.42), indicating that it may underlie this signal. Exon skipping attributable to the deletion (risk) allele introduces a premature stop codon in exon 7 of CTRB2, yielding a truncated chymotrypsinogen B2 protein that lacks chymotrypsin activity, is poorly secreted, and accumulates intracellularly in the endoplasmic reticulum (ER). We propose that intracellular accumulation of a nonfunctional chymotrypsinogen B2 protein leads to ER stress and pancreatic inflammation, which may explain the increased pancreatic cancer risk in carriers of CTRB2 exon 6 deletion alleles.


Subject(s)
Chymotrypsin/genetics , Pancreatic Neoplasms/pathology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sequence Deletion , Case-Control Studies , Chymotrypsin/antagonists & inhibitors , Chymotrypsin/metabolism , Genome-Wide Association Study , Genotype , Humans , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/metabolism
2.
Sci Transl Med ; 15(707): eadg0873, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37531416

ABSTRACT

Host restriction factors play key roles in innate antiviral defense, but it remains poorly understood which of them restricts HIV-1 in vivo. Here, we used single-cell transcriptomic analysis to identify host factors associated with HIV-1 control during acute infection by correlating host gene expression with viral RNA abundance within individual cells. Wide sequencing of cells from one participant with the highest plasma viral load revealed that intracellular viral RNA transcription correlates inversely with expression of the gene PTMA, which encodes prothymosin α. This association was genome-wide significant (Padjusted < 0.05) and was validated in 28 additional participants from Thailand and the Americas with HIV-1 CRF01_AE and subtype B infections, respectively. Overexpression of prothymosin α in vitro confirmed that this cellular factor inhibits HIV-1 transcription and infectious virus production. Our results identify prothymosin α as a host factor that restricts HIV-1 infection in vivo, which has implications for viral transmission and cure strategies.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , Transcriptome/genetics , HIV Infections/genetics , RNA, Viral
SELECTION OF CITATIONS
SEARCH DETAIL