ABSTRACT
Pan-American mitochondrial DNA (mtDNA) haplogroup C1 has been recently subdivided into three branches, two of which (C1b and C1c) are characterized by ages and geographical distributions that are indicative of an early arrival from Beringia with Paleo-Indians. In contrast, the estimated ages of C1d--the third subset of C1--looked too young to fit the above scenario. To define the origin of this enigmatic C1 branch, we completely sequenced 63 C1d mitochondrial genomes from a wide range of geographically diverse, mixed, and indigenous American populations. The revised phylogeny not only brings the age of C1d within the range of that of its two sister clades, but reveals that there were two C1d founder genomes for Paleo-Indians. Thus, the recognized maternal founding lineages of Native Americans are at least 15, indicating that the overall number of Beringian or Asian founder mitochondrial genomes will probably increase extensively when all Native American haplogroups reach the same level of phylogenetic and genomic resolution as obtained here for C1d.
Subject(s)
Genome, Mitochondrial/genetics , Indians, North American/genetics , Americas , DNA, Mitochondrial/genetics , Emigration and Immigration , Genetic Variation , Genome, Human , Geography , Haplotypes , Humans , Molecular Sequence Data , PhylogenyABSTRACT
It has been recorded that one of the possible causes that eventually escalated into the 1857 manslaughter at Mountain Meadows in Southern Utah was the poisoning of an open spring by the Fancher-Baker party as they crossed the Utah territory on their way from Arkansas to California. Historical accounts report that a number of cattle died, followed by human casualties from those that came in contact with the dead animals. Even after the Arkansas party departed, animals continued to perish and people were still afflicted by some unknown plague. Proctor Hancock Robison, a local 14-year-old boy, died shortly after skinning one of the "poisoned" cows. A careful review of the historical records, along with the more recent scientific literature, seems to exclude the likelihood of actual poisoning in favor of a more recent theory that would point to the bacterium Bacillus anthracis as the possible cause of human and animal deaths. In order to test this hypothesis, Proctor's remains were exhumed, identified through mitochondrial DNA analysis, and tested for the presence of anthrax spores. Although preliminary testing of remains and soil was negative, description of the clinical conditions that affected Proctor and other individuals does not completely rule out the hypothesis of death by anthrax.
Subject(s)
Anthrax/history , Bacillus anthracis/genetics , DNA, Mitochondrial/genetics , Animals , Anthrax/genetics , Bone and Bones/chemistry , Cattle/microbiology , DNA, Bacterial/genetics , Exhumation , Female , History, 19th Century , Humans , Male , RNA, Ribosomal, 16S , Real-Time Polymerase Chain Reaction , Soil Microbiology , Spores, Bacterial , UtahABSTRACT
The ability to infer personal genetic ancestry is being increasingly utilised in certain medical and forensic situations. Herein, the unsupervised Bayesian clustering algorithms structure, is employed to analyse 377 autosomal short tandem repeats typed on 1,056 individuals from the Centre d'Etude du Polymorphisme Humain Human Diversity Panel. Individuals of known geographical origin were hierarchically classified into a framework of increasingly homogeneous clusters to serve as reference populations into which individuals of unknown ancestry can be assigned. The groupings were characterised by the geographical affinities of cluster members and the accuracy of these procedures was verified using several genetic indices. Fine-scale substructure was detectable beyond the broad population level classifications that previously have been explored in this dataset. Metrics indicated that within certain lines, the strongest structuring signals were detected at the leaves of the hierarchy where lineage-specific groupings were identified. The accuracy of unknown assignment was assessed at each level of the hierarchy using a 'leave one out' strategy in which each individual was stripped of cluster membership and then re-assigned using the supervised Bayesian clustering algorithm implemented in GeneClass2. Although most clusters at all levels of resolution experienced highly accurate assignment, a decline was observed in the finer levels due to the mixed membership characteristics of some individuals. The parameters defined by this study allowed for assignment of unknown individuals to genetically defined clusters with measured likelihood. Shared ancestry data can then be inferred for the unknown individual.
Subject(s)
Genetics, Population/methods , Population Groups/genetics , Algorithms , Bayes Theorem , Genetics, Medical , Geography , Humans , Reference Values , Repetitive Sequences, Nucleic AcidABSTRACT
AIM: To determine the human Y-chromosome haplogroup backgrounds of non-consensus DYS458.2 short tandem repeat alleles and evaluate their phylogenetic substructure and frequency in representative samples from the Middle East, Europe, and Pakistan. METHODS: Molecular characterization of lineages was achieved using a combination of Y-chromosome haplogroup defining binary polymorphisms and up to 37 short tandem repeat loci, including DYS388 to construct haplotypes. DNA sequencing of the DYS458 locus and median-joining network analyses were used to evaluate Y-chromosome lineages displaying the DYS458.2 motif. RESULTS: We showed that the DYS458.2 allelic innovation arose independently on at least two distinctive binary haplogroup backgrounds and possibly a third as well. The partial allele length pattern was fixed in all haplogroup J1 chromosomes examined, including its known rare sub-haplogroups. Within the alternative R1b3 associated M405 defined sub-haplogroup, both DYS458.0 and DYS458.2 allele classes occurred. A single chromosome also allocated to the R1b3-M269*(xM405) classification. The physical position of the partial insertion/deletion occurrence within the normal tetramer tract differed distinctly in each haplogroup context. CONCLUSIONS: While unusual DYS458.2 alleles are informative, additional information for other linked polymorphic loci is required when using such non-conforming alleles to infer haplogroup background and common ancestry.
Subject(s)
Chromosomes, Human, Y/genetics , Gene Frequency , Haplotypes , Microsatellite Repeats , Alleles , Europe , Genetics, Population , Humans , Pakistan , Point Mutation , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , TurkeyABSTRACT
The Isthmus of Panama--the narrow neck of land connecting the northern and southern American landmasses--was an obligatory corridor for the Paleo-Indians as they moved into South America. Archaeological evidence suggests an unbroken link between modern natives and their Paleo-Indian ancestors in some areas of Panama, even if the surviving indigenous groups account for only 12.3% of the total population. To evaluate if modern Panamanians have retained a larger fraction of the native pre-Columbian gene pool in their maternally-inherited mitochondrial genome, DNA samples and historical records were collected from more than 1500 volunteer participants living in the nine provinces and four indigenous territories of the Republic. Due to recent gene-flow, we detected ~14% African mitochondrial lineages, confirming the demographic impact of the Atlantic slave trade and subsequent African immigration into Panama from Caribbean islands, and a small European (~2%) component, indicating only a minor influence of colonialism on the maternal side. The majority (~83%) of Panamanian mtDNAs clustered into native pan-American lineages, mostly represented by haplogroup A2 (51%). These findings reveal an overwhelming native maternal legacy in today's Panama, which is in contrast with the overall concept of personal identity shared by many Panamanians. Moreover, the A2 sub-clades A2ad and A2af (with the previously named 6 bp Huetar deletion), when analyzed at the maximum level of resolution (26 entire mitochondrial genomes), confirm the major role of the Pacific coastal path in the peopling of North, Central and South America, and testify to the antiquity of native mitochondrial genomes in Panama.