ABSTRACT
Helicobacter pylori infection is involved in development of diverse gastro-pathologies. Our aim is to investigate potential signature of cytokines-chemokine levels (IL-17A, IL-1ß, and CXCL-8) in H. pylori-infected patients and their impact on immune response in both corpus and antrum. Multivariate level analysis with machine learning model were carried out using cytokines/chemokine levels of infected Moroccan patients. In addition, Geo dataset was used to run enrichment analysis following CXCL-8 upregulation. Our analysis showed that combination of cytokines-chemokine levels allowed prediction of positive H. pylori density score with <5% of miss-classification error, with fundus CXCL-8 being the most important variable for this discrimination. Furthermore, CXCL-8 dependent expression profile was mainly associated to IL6/JAK/STAT3 signaling in the antrum, interferons alpha and gamma responses in the corpus and commonly induced transcriptional /proliferative activities. To conclude, CXCL-8 level might be a signature of Moroccan H. pylori-infected patients and an inducer of regional-dependent immune response at the gastric level. Larger trials must be carried out to validate the relevance of these results for diverse populations.
Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Cytokines/metabolism , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Helicobacter Infections/metabolism , Helicobacter Infections/pathology , Helicobacter pylori/metabolism , Immunity , Stomach/pathologyABSTRACT
Platelets play a major role in the processes of primary hemostasis and pathological inflammation-induced thrombosis. In the mid-2000s, several studies expanded the role of these particular cells, placing them in the "immune continuum" and thus changing the understanding of their function in both innate and adaptive immune responses. Among the many receptors they express on their surface, platelets express Toll-Like Receptors (TLRs), key receptors in the inflammatory cell-cell reaction and in the interaction between innate and adaptive immunity. In response to an infectious stimulus, platelets will become differentially activated. Platelet activation is variable depending on whether platelets are activated by a hemostatic or pathogen stimulus. This review highlights the role that platelets play in platelet modulation count and adaptative immune response during viral infection.
Subject(s)
Blood Platelets , Virus Diseases , Humans , Platelet Activation , Inflammation , Immune System , Immunity, InnateABSTRACT
Genetic polymorphisms at the IL-1 cluster are associated with increased Helicobacter pylori (H. pylori)-associated disease risk in an ethnically dependent manner. Due to the corroborated role of IL-1ß in H. pylori infection progression, our aim is to depict the impact of IL1B rs1143627 and rs16944 as well as the IL1RN variable number of identical tandem repeats (VNTR) on the clinical and biological features of Moroccan H. pylori-infected patients. A total of 58 patients with epigastralgic pain were referred to the gastroenterology department for histopathological and clinical analysis. DNA extraction from antrum and fundus biopsies and PCR-RFLP were performed to detect polymorphisms. As a result, VNTR was significantly associated with IL-1ß antrum levels (p-value = 0.029), where the *1/*4 genotype showed a positive association with upregulated cytokine levels in the antrum and was clustered with H. pylori-infected patients' features and higher levels of IL-1ß in the antrum and fundus. Likewise, *1/*1 genotype carriers clustered with severe gastritis activity and H. pylori density scores along with low levels of IL-1ß in the antrum and fundus, while the *1/*2 genotype was clustered with non-infected-patient features and normal IL-1ß levels. In conclusion, VNTR might be an interesting predictor to identify patients at risk of developing H. pylori-associated pathologies.
ABSTRACT
Cutaneous leishmaniasis (CL), a vector-borne parasitic disease caused by the Leishmania protozoan, is a serious public health problem in Morocco. The treatment of this disease is still based on pentavalent antimonials as the primary therapy, but these have associated side effects. Thus, the development of effective, risk-free alternative therapeutics based on natural compounds against leishmaniasis is urgent. Arginase, the key enzyme in the polyamine biosynthetic pathway, plays a critical role in leishmaniasis outcome and has emerged as a potential therapeutic target. The objective of this study was to test Cannabis sativa's phytochemical components (cannabinoids and terpenoids) through molecular docking against Leishmania and human arginase enzymes. Our results showed that delta-9-tetrahydrocannabinol (THC) possessed the best binding energies of -6.02 and -6.35 kcal/mol with active sites of Leishmania and human arginases, respectively. Delta-9-THC interacted with Leishmania arginase through various amino acids including His139 and His 154 and linked to human arginase via His 126. In addition to delta-9-THC, caryophyllene oxide and cannabidiol (CBD) also showed a good inhibition of Leishmania and human arginases, respectively. Overall, the studied components were found to inhibit both arginases active sites via hydrogen bonds and hydrophobic interactions. These components may serve as therapeutic agents or in co-administrated therapy for leishmaniasis.