Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Chemosphere ; 313: 137479, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36513195

ABSTRACT

Microplastics (MP) are distributed throughout ecosystems and settle into sediments where they may threaten benthic communities; however, methods for quantifying MP in sediments have not been standardized. This study compares two methods for analyzing MP in sediments, including extraction and identification, and provides recommendations for improvement. Two laboratories processed sediment samples using two methods, referred to as "core" and "augmentation", and identified particles with visual microscopy and spectroscopy. Using visual microscopy, the augmentation method yielded mean recoveries (78%) significantly greater than the core (47%) (p = 0.03), likely due to the use of separatory funnels in the former. Spectroscopic recovery of particles was lower at 42 and 54% for the core and augmentation methods, respectively. We suspect the visual identification recoveries are overestimations from erroneous identification of non-plastic materials persisting post-extraction, indicating visual identification alone is not an accurate method to identify MP, particularly in complex matrices like sediment. However, both Raman and FTIR proved highly accurate at identifying recovered MP, with 96.7% and 99.8% accuracy, respectively. Low spectroscopic recovery of spiked particles indicates that MP recovery from sediments is lower than previously assumed, and MP may be more abundant in sediments than current analyses suggest. To our knowledge, likely due to the excessive time/labor-intensity associated with MP analyses, this is the first interlaboratory study to quantify complete method performance (extraction, identification) for sediments, with regards to capabilities and limitations. This is essential as regulatory bodies move toward long-term environmental MP monitoring.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Ecosystem , Microplastics/analysis , Plastics , Environmental Monitoring/methods
2.
Mar Pollut Bull ; 192: 115073, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37245322

ABSTRACT

A common method for characterizing microplastics (MPs) involves capturing the plastic particles on a filter after extraction and isolation from the sediment particles. Microplastics captured on the filter are then scanned with Raman spectroscopy for polymer identification and quantification. However, scanning the whole filter manually using Raman analysis is a labor-intensive and time-consuming process. This study investigates a subsampling method for Raman spectroscopic analysis of microplastics (operationally defined here as 45-1000 µm in size) present in sediments and isolated onto laboratory filters. The method was evaluated using spiked MPs in deionized water and two environmentally contaminated sediments. Based on statistical analyses, we found quantification of a sub-fraction of 12.5 % of the filter in a wedge form was optimal, efficient, and accurate for estimating the entire filter count. The extrapolation method was then used to assess microplastic contamination in sediments from different marine regions of the United States.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Plastics/analysis , Spectrum Analysis, Raman , Water Pollutants, Chemical/analysis , Environmental Monitoring , Geologic Sediments/chemistry
3.
Mar Pollut Bull ; 174: 113254, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34923404

ABSTRACT

Microplastics are small plastic particles found ubiquitously in marine environments. In this study, a hybridized method was developed for the extraction of microplastics (45-1000 µm) from sediments using sodium bromide solution for density separation. Method development was tested using spiked microplastics as internal standards. The method was then used to extract microplastics from sediments in Narragansett Bay, Rhode Island, USA. Suspect microplastics were analyzed with Raman spectroscopy. Microplastic abundance ranged from 40 particles/100 g sediment to 4.6 million particles/100 g sediment (wet weight). Cellulose acetate fibers were the most abundant microplastic. These results are some of the first data for microplastics in Rhode Island sediments.


Subject(s)
Microplastics , Water Pollutants, Chemical , Bays , Environmental Monitoring , Geologic Sediments , Plastics , Rhode Island , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL