Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Transl Med ; 13: 48, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25638171

ABSTRACT

BACKGROUND: Dobesilate (2,5-dihydroxyphenyl sulfonate, DHPS) was recently identified as the most potent member of a family of fibroblast growth factor (FGF) inhibitors headed by gentisic acid, one of the main catabolites of aspirin. Although FGFs were first described as inducers of angiogenesis, they were soon recognized as broad spectrum mitogens. Furthermore, in the last decade these proteins have been shown to participate directly in the onset of inflammation, and their potential angiogenic activity often contributes to the inflammatory process in vivo. The aim of this work was to evaluate the anti-inflammatory, anti-angiogenic and anti-tumoral activities of the derivative of DHPS obtained by acetoxylation of its two hydroxyl groups (2,5-diacetoxyphenyl sulfonate; DAPS). METHODS: Anti-inflammatory, anti-angiogenic and anti-tumoral activities of DHPS and DAPS were compared using in vivo assays of dermatitis, angiogenesis and tumorigenesis. The effects of both compounds on myeloperoxidase (MPO) and cyclooxygenase (COX) activities, cytokine production and FGF-induced fibroblast proliferation were also determined. RESULTS: Topical DAPS is more effective than DHPS in preventing inflammatory signs (increased vascular permeability, edema, leukocyte infiltration, MPO activation) caused by contact dermatitis induction in rat ears. DAPS, but not DHPS, effectively inhibits COX-1 and COX-2 activities. DAPS also reduces the increase in serum cytokine concentration induced by lipopolysaccharide in rats. Furthermore, DAPS displays higher in vivo efficacy than DHPS in inhibiting FGF-induced angiogenesis and heterotopic glioma progression, with demonstrated oral efficacy to combat both processes. CONCLUSIONS: By inhibiting both FGF-signaling and COX-mediated prostaglandin synthesis, DAPS efficiently breaks the vicious circle created by the reciprocal induction of FGF and prostaglandins, which probably sustains undesirable inflammation in many circumstances. Our findings define the enhancement of anti-inflammatory, anti-angiogenic and anti-tumoral activities by diacetyloxyl derivatization of the FGF inhibitor, dobesilate.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Fibroblast Growth Factors/antagonists & inhibitors , Acetylation , Administration, Oral , Administration, Topical , Animals , Benzenesulfonates/administration & dosage , Benzenesulfonates/chemistry , Benzenesulfonates/pharmacology , Benzenesulfonates/therapeutic use , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Dermatitis/complications , Dermatitis/drug therapy , Dermatitis/pathology , Fibroblast Growth Factors/metabolism , Inflammation/complications , Inflammation/drug therapy , Inflammation/pathology , Inflammation Mediators/metabolism , Injections, Intraperitoneal , Male , Mitogens/pharmacology , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL