Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Fish Shellfish Immunol ; 39(2): 178-84, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24859594

ABSTRACT

Cytotoxic T lymphocytes (CTL) recognize and kill cells infected with viruses, intracellular bacteria and tumors with MHC restriction and antigen specificity. In addition to these activities, recent studies in mammals have suggested that CTL can exhibit direct microbicidal activity. In our previous study we documented direct antibacterial activity of CD4(+) T cells and sIgM(+) cells as well as CD8α(+) T cells from immunized fish. However, we also found weak non-specific killing activity of lymphocytes against bacteria. In the present study we further analyzed the weak killing activity of lymphocytes, increasing the effector cell to target bacteria ratio from 10:1 to 10(3):1. Sensitized and non-sensitized effector lymphocytes (CD8α(+), CD4(+) and sIgM(+)) separated by MACS were incubated with target bacteria. CD8α(+) T cells from Edwardsiella tarda-immunized ginbuna crucian carp killed 98%, 100% and 70% of E. tarda, Streptococcus iniae and Escherichia coli, respectively. CD8α(+) T cells from non-immunized fish showed similar but slightly lower killing activity than sensitized cells. CD4(+) and sIgM(+) lymphocytes also showed high killing activity against E. tarda and S. iniae as found for CD8α(+) T cells, although the activity was lower against E. coli. Supernatants from all three types of lymphocytes showed microbicidal activity, although the activity was lower than that evoked by effector lymphocytes. Furthermore, the presence of a membrane between effectors and targets did not affect the killing activity. The present results suggest that both sensitized and non-sensitized lymphocytes non-specifically killed target bacteria without the need of contact. The major difference between the present and previous experiments is the E:T ratio. We suspect that there are two different mechanisms in the direct bacterial killing by lymphocytes in ginbuna.


Subject(s)
Carps , Edwardsiella tarda/immunology , Enterobacteriaceae Infections/veterinary , Escherichia coli/immunology , Fish Diseases/immunology , Streptococcus/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antibodies, Monoclonal/immunology , Enterobacteriaceae Infections/immunology , Fish Diseases/microbiology , Immunomagnetic Separation
2.
Antibiotics (Basel) ; 10(5)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065896

ABSTRACT

Synbiotic (SYN) additives were assessed as an antibiotic alternative on the effects on the nonspecific immune response and disease resistance of O. niloticus to P. aeruginosa. Healthy fish (n = 120, average initial weight 18 ± 2 g) were allotted randomly into four experimental groups (3 replicates for each); 1) a control group with no additives (CON), 2) basal diet complemented with 0.1 g kg-1 diets of norfloxacin, NFLX, 3) basal diet fortified with 1 mL kg-1 diet of SYN, and 4) basal diet complemented with a mixture of NFLX and SYN, which was carried out for eight weeks. Results showed a significant increase (p < 0.01) in the serum immune parameters (total protein, globulin and albumin, nitric oxide (NO), and lysozyme activity) in the SYN group and the NFLX+SYN group compared with the CON and NFLX groups. The serum glucose, cholesterol, and triglycerides were higher in NFLX and NFLX+SYN groups than the CON and SYN groups. The catalase (CAT), superoxide dismutase, glutathione peroxidase (GPX) activities were significantly augmented in the NFLX+SYN group, followed by the SYN group compared with CON and NFLX groups. The cumulative mortality rate (CMR) of O. niloticus following the P. aeruginosa challenge was decreased in the SYN group compared to other groups. The results emphasize that synbiotic could be used as a norfloxacin alternative to enhance the related immunological parameters, including antioxidant activity and disease resistance against P. aeruginosa infection of O. niloticus.

SELECTION OF CITATIONS
SEARCH DETAIL