Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Cell ; 184(21): 5419-5431.e16, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34597582

ABSTRACT

Many enveloped viruses require the endosomal sorting complexes required for transport (ESCRT) pathway to exit infected cells. This highly conserved pathway mediates essential cellular membrane fission events, which restricts the acquisition of adaptive mutations to counteract viral co-option. Here, we describe duplicated and truncated copies of the ESCRT-III factor CHMP3 that block ESCRT-dependent virus budding and arose independently in New World monkeys and mice. When expressed in human cells, these retroCHMP3 proteins potently inhibit release of retroviruses, paramyxoviruses, and filoviruses. Remarkably, retroCHMP3 proteins have evolved to reduce interactions with other ESCRT-III factors and have little effect on cellular ESCRT processes, revealing routes for decoupling cellular ESCRT functions from viral exploitation. The repurposing of duplicated ESCRT-III proteins thus provides a mechanism to generate broad-spectrum viral budding inhibitors without blocking highly conserved essential cellular ESCRT functions.


Subject(s)
Cytokinesis , Endosomal Sorting Complexes Required for Transport/metabolism , HIV-1/physiology , Viral Envelope Proteins/metabolism , Virus Release , Animals , Cell Death , Cell Survival , Endosomal Sorting Complexes Required for Transport/ultrastructure , HEK293 Cells , HeLa Cells , Humans , Interferons/metabolism , Mammals/genetics , Mice, Inbred C57BL , RNA/metabolism , Signal Transduction , Vesicular Transport Proteins/metabolism , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/metabolism
2.
PLoS Biol ; 22(5): e3002606, 2024 May.
Article in English | MEDLINE | ID: mdl-38814944

ABSTRACT

Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metatranscriptomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Cohousing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.


Subject(s)
Zebrafish , Animals , Zebrafish/virology , Zebrafish/microbiology , Fish Diseases/virology , Fish Diseases/microbiology , Fish Diseases/transmission , Pets/virology , Pets/microbiology , Animals, Laboratory/virology , Animals, Laboratory/microbiology , Aquaculture
3.
Cell ; 150(4): 831-41, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22901812

ABSTRACT

In contrast to RNA viruses, double-stranded DNA viruses have low mutation rates yet must still adapt rapidly in response to changing host defenses. To determine mechanisms of adaptation, we subjected the model poxvirus vaccinia to serial propagation in human cells, where its antihost factor K3L is maladapted against the antiviral protein kinase R (PKR). Viruses rapidly acquired higher fitness via recurrent K3L gene amplifications, incurring up to 7%-10% increases in genome size. These transient gene expansions were necessary and sufficient to counteract human PKR and facilitated the gain of an adaptive amino acid substitution in K3L that also defeats PKR. Subsequent reductions in gene amplifications offset the costs associated with larger genome size while retaining adaptive substitutions. Our discovery of viral "gene-accordions" explains how poxviruses can rapidly adapt to defeat different host defenses despite low mutation rates and reveals how classical Red Queen conflicts can progress through unrecognized intermediates.


Subject(s)
Evolution, Molecular , Gene Amplification , Poxviridae/genetics , Viral Proteins/genetics , Gene Dosage , Genome Size , Genome, Viral , HeLa Cells , Host-Pathogen Interactions , Humans , Poxviridae/physiology , Poxviridae Infections/virology , Recombination, Genetic , eIF-2 Kinase/metabolism
4.
Proc Natl Acad Sci U S A ; 121(5): e2312691121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38277437

ABSTRACT

Phosphodiesterases (PDEs) encoded by viruses are putatively acquired by horizontal transfer of cellular PDE ancestor genes. Viral PDEs inhibit the OAS-RNase L antiviral pathway, a key effector component of the innate immune response. Although the function of these proteins is well-characterized, the origins of these gene acquisitions are less clear. Phylogenetic analysis revealed at least five independent PDE acquisition events by ancestral viruses. We found evidence that PDE-encoding genes were horizontally transferred between coronaviruses belonging to different genera. Three clades of viruses within Nidovirales: merbecoviruses (MERS-CoV), embecoviruses (HCoV-OC43), and toroviruses encode independently acquired PDEs, and a clade of rodent alphacoronaviruses acquired an embecovirus PDE via recent horizontal transfer. Among rotaviruses, the PDE of rotavirus A was acquired independently from rotavirus B and G PDEs, which share a common ancestor. Conserved motif analysis suggests a link between all viral PDEs and a similar ancestor among the mammalian AKAP7 proteins despite low levels of sequence conservation. Additionally, we used ancestral sequence reconstruction and structural modeling to reveal that sequence and structural divergence are not well-correlated among these proteins. Specifically, merbecovirus PDEs are as structurally divergent from the ancestral protein and the solved structure of human AKAP7 PDE as they are from each other. In contrast, comparisons of rotavirus B and G PDEs reveal virtually unchanged structures despite evidence for loss of function in one, suggesting impactful changes that lie outside conserved catalytic sites. These findings highlight the complex and volatile evolutionary history of viral PDEs and provide a framework to facilitate future studies.


Subject(s)
Diethylstilbestrol/analogs & derivatives , Endoribonucleases , Middle East Respiratory Syndrome Coronavirus , Phosphoric Diester Hydrolases , Rotavirus , Animals , Humans , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Phylogeny , Mammals/metabolism
5.
J Virol ; 97(2): e0008923, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36700640

ABSTRACT

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Subject(s)
Research , Virology , Virus Diseases , Humans , COVID-19/prevention & control , Information Dissemination , Pandemics/prevention & control , Policy Making , Research/standards , Research/trends , SARS-CoV-2 , Virology/standards , Virology/trends , Virus Diseases/prevention & control , Virus Diseases/virology , Viruses
6.
PLoS Biol ; 18(12): e3001045, 2020 12.
Article in English | MEDLINE | ID: mdl-33370271

ABSTRACT

Host-pathogen conflicts leave genetic signatures in genes that are critical for host defense functions. Using these "molecular scars" as a guide to discover gene functions, we discovered a vertebrate-specific MItochondrial STress Response (MISTR) circuit. MISTR proteins are associated with electron transport chain (ETC) factors and activated by stress signals such as interferon gamma (IFNγ) and hypoxia. Upon stress, ultraconserved microRNAs (miRNAs) down-regulate MISTR1(NDUFA4) followed by replacement with paralogs MItochondrial STress Response AntiViral (MISTRAV) and/or MItochondrial STress Response Hypoxia (MISTRH). While cells lacking MISTR1(NDUFA4) are more sensitive to chemical and viral apoptotic triggers, cells lacking MISTRAV or expressing the squirrelpox virus-encoded vMISTRAV exhibit resistance to the same insults. Rapid evolution signatures across primate genomes for MISTR1(NDUFA4) and MISTRAV indicate recent and ongoing conflicts with pathogens. MISTR homologs are also found in plants, yeasts, a fish virus, and an algal virus indicating ancient origins and suggesting diverse means of altering mitochondrial function under stress. The discovery of MISTR circuitry highlights the use of evolution-guided studies to reveal fundamental biological processes.


Subject(s)
Host-Pathogen Interactions/genetics , Mitochondria/genetics , Stress, Physiological/genetics , Animals , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Evolution, Molecular , Gene Regulatory Networks/genetics , Host-Pathogen Interactions/physiology , Humans , MicroRNAs/genetics , Mitochondria/metabolism , Phylogeny , Stress, Physiological/physiology , Viruses/genetics
7.
Nat Rev Genet ; 18(2): 71-86, 2017 02.
Article in English | MEDLINE | ID: mdl-27867194

ABSTRACT

Transposable elements (TEs) are a prolific source of tightly regulated, biochemically active non-coding elements, such as transcription factor-binding sites and non-coding RNAs. Many recent studies reinvigorate the idea that these elements are pervasively co-opted for the regulation of host genes. We argue that the inherent genetic properties of TEs and the conflicting relationships with their hosts facilitate their recruitment for regulatory functions in diverse genomes. We review recent findings supporting the long-standing hypothesis that the waves of TE invasions endured by organisms for eons have catalysed the evolution of gene-regulatory networks. We also discuss the challenges of dissecting and interpreting the phenotypic effect of regulatory activities encoded by TEs in health and disease.


Subject(s)
DNA Transposable Elements/genetics , Evolution, Molecular , Gene Regulatory Networks , Animals , Humans
8.
PLoS Genet ; 12(5): e1006063, 2016 05.
Article in English | MEDLINE | ID: mdl-27203426

ABSTRACT

Lactoferrin is a multifunctional mammalian immunity protein that limits microbial growth through sequestration of nutrient iron. Additionally, lactoferrin possesses cationic protein domains that directly bind and inhibit diverse microbes. The implications for these dual functions on lactoferrin evolution and genetic conflicts with microbes remain unclear. Here we show that lactoferrin has been subject to recurrent episodes of positive selection during primate divergence predominately at antimicrobial peptide surfaces consistent with long-term antagonism by bacteria. An abundant lactoferrin polymorphism in human populations and Neanderthals also exhibits signatures of positive selection across primates, linking ancient host-microbe conflicts to modern human genetic variation. Rapidly evolving sites in lactoferrin further correspond to molecular interfaces with opportunistic bacterial pathogens causing meningitis, pneumonia, and sepsis. Because microbes actively target lactoferrin to acquire iron, we propose that the emergence of antimicrobial activity provided a pivotal mechanism of adaptation sparking evolutionary conflicts via acquisition of new protein functions.


Subject(s)
Bacteria/immunology , Iron/metabolism , Lactoferrin/genetics , Selection, Genetic/genetics , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/immunology , Bacteria/pathogenicity , Genetics, Population , Humans , Iron/immunology , Lactoferrin/immunology , Neanderthals/genetics , Neanderthals/immunology , Polymorphism, Genetic , Primates/genetics , Primates/immunology
9.
Proc Natl Acad Sci U S A ; 113(34): 9575-80, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27506791

ABSTRACT

The yeast HO endonuclease is expressed in late G1 in haploid mother cells to initiate mating-type interconversion. Cells can be arrested in G1 by nutrient deprivation or by pheromone exposure, but cells that resume cycling after nutrient deprivation or cyclin-dependent kinase (CDK) inactivation express HO in the first cell cycle, whereas HO is not expressed until the second cycle after release from pheromone arrest. Here, we show that transcription of a long noncoding RNA (lncRNA) mediates this differential response. The SBF and Mediator factors remain bound to the inactive promoter during arrest due to CDK inactivation, and these bound factors allow the cell to remember a transcriptional decision made before arrest. If the presence of mating pheromone indicates that this decision is no longer appropriate, a lncRNA originating at -2700 upstream of the HO gene is induced, and the transcription machinery displaces promoter-bound SBF, preventing HO transcription in the subsequent cell cycle. Further, we find that the displaced SBF is blocked from rebinding due to incorporation of its recognition sites within nucleosomes. Expressing the pHO-lncRNA in trans is ineffective, indicating that transcription in cis is required. Factor displacement during lncRNA transcription could be a general mechanism for regulating memory of previous events at promoters.


Subject(s)
Endonucleases/genetics , Gene Expression Regulation, Fungal , Promoter Regions, Genetic , RNA, Fungal/genetics , RNA, Long Noncoding/genetics , Saccharomyces cerevisiae/genetics , Base Sequence , Binding Sites , Endonucleases/metabolism , G1 Phase Cell Cycle Checkpoints , Mediator Complex/genetics , Mediator Complex/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Binding , RNA, Fungal/biosynthesis , RNA, Long Noncoding/biosynthesis , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
10.
Trends Genet ; 31(11): 627-636, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26431675

ABSTRACT

Host-pathogen interactions provide valuable systems for the study of evolutionary genetics and natural selection. The sequestration of essential iron has emerged as a crucial innate defense system termed nutritional immunity, leading pathogens to evolve mechanisms of 'iron piracy' to scavenge this metal from host proteins. This battle for iron carries numerous consequences not only for host-pathogen evolution but also microbial community interactions. Here we highlight recent and potential future areas of investigation on the evolutionary implications of microbial iron piracy in relation to molecular arms races, host range, competition, and virulence. Applying evolutionary genetic approaches to the study of microbial iron acquisition could also provide new inroads for understanding and combating infectious disease.


Subject(s)
Bacteria/metabolism , Communicable Diseases/metabolism , Fungi/metabolism , Host-Pathogen Interactions , Iron/metabolism , Virulence Factors/metabolism , Animals , Bacteria/genetics , Bacteria/pathogenicity , Biological Evolution , Communicable Diseases/immunology , Communicable Diseases/microbiology , Communicable Diseases/pathology , Fungi/genetics , Fungi/pathogenicity , Gene Expression , Humans , Immunity, Innate , Ion Transport , Selection, Genetic , Siderophores/metabolism , Transferrin/genetics , Transferrin/immunology , Transferrin/metabolism , Virulence Factors/genetics
11.
J Virol ; 91(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27928012

ABSTRACT

Viruses are under relentless selective pressure from host immune defenses. To study how poxviruses adapt to innate immune detection pathways, we performed serial vaccinia virus infections in primary human cells. Independent courses of experimental evolution with a recombinant strain lacking E3L revealed several high-frequency point mutations in conserved poxvirus genes, suggesting important roles for essential poxvirus proteins in innate immune subversion. Two distinct mutations were identified in the viral RNA polymerase gene A24R, which seem to act through different mechanisms to increase virus replication. Specifically, a Leu18Phe substitution encoded within A24R conferred fitness trade-offs, including increased activation of the antiviral factor protein kinase R (PKR). Intriguingly, this A24R variant underwent a drastic selective sweep during passaging, despite enhanced PKR activity. We showed that the sweep of this variant could be accelerated by the presence of copy number variation (CNV) at the K3L locus, which in multiple copies strongly reduced PKR activation. Therefore, adaptive cases of CNV can facilitate the accumulation of point mutations separate from the expanded locus. This study reveals how rapid bouts of gene copy number amplification during accrual of distant point mutations can potently facilitate poxvirus adaptation to host defenses. IMPORTANCE: Viruses can evolve quickly to defeat host immune functions. For poxviruses, little is known about how multiple adaptive mutations emerge in populations at the same time. In this study, we uncovered a means of vaccinia virus adaptation involving the accumulation of distinct genetic variants within a single population. We identified adaptive point mutations in the viral RNA polymerase gene A24R and, surprisingly, found that one of these mutations activates the nucleic acid sensing factor PKR. We also found that gene copy number variation (CNV) can provide dual benefits to evolving virus populations, including evidence that CNV facilitates the accumulation of a point mutation distant from the expanded locus. Our data suggest that transient CNV can accelerate the fixation of mutations conferring modest benefits, or even fitness trade-offs, and highlight how structural variation might aid poxvirus adaptation through both direct and indirect actions.


Subject(s)
Biological Evolution , DNA Copy Number Variations , DNA-Directed RNA Polymerases/genetics , Gene Amplification , Vaccinia virus/physiology , Adaptation, Biological , Alleles , DNA-Directed RNA Polymerases/metabolism , Evolution, Molecular , Fibroblasts , Gene Frequency , Genetic Fitness , Genome, Viral , Humans , Mutation Rate , Open Reading Frames , Point Mutation , RNA, Viral , Virus Replication
12.
PLoS Genet ; 11(5): e1005203, 2015 May.
Article in English | MEDLINE | ID: mdl-25942676

ABSTRACT

A diverse subset of pattern recognition receptors (PRRs) detects pathogen-associated nucleic acids to initiate crucial innate immune responses in host organisms. Reflecting their importance for host defense, pathogens encode various countermeasures to evade or inhibit these immune effectors. PRRs directly engaged by pathogen inhibitors often evolve under recurrent bouts of positive selection that have been described as molecular 'arms races.' Cyclic GMP-AMP synthase (cGAS) was recently identified as a key PRR. Upon binding cytoplasmic double-stranded DNA (dsDNA) from various viruses, cGAS generates the small nucleotide secondary messenger cGAMP to signal activation of innate defenses. Here we report an evolutionary history of cGAS with recurrent positive selection in the primate lineage. Recent studies indicate a high degree of structural similarity between cGAS and 2'-5'-oligoadenylate synthase 1 (OAS1), a PRR that detects double-stranded RNA (dsRNA), despite low sequence identity between the respective genes. We present comprehensive comparative evolutionary analysis of cGAS and OAS1 primate sequences and observe positive selection at nucleic acid binding interfaces and distributed throughout both genes. Our data revealed homologous regions with strong signatures of positive selection, suggesting common mechanisms employed by unknown pathogen encoded inhibitors and similar modes of evasion from antagonism. Our analysis of cGAS diversification also identified alternately spliced forms missing multiple sites under positive selection. Further analysis of selection on the OAS family in primates, which comprises OAS1, OAS2, OAS3 and OASL, suggests a hypothesis where gene duplications and domain fusion events result in paralogs that provide another means of escaping pathogen inhibitors. Together our comparative evolutionary analysis of cGAS and OAS provides new insights into distinct mechanisms by which key molecular sentinels of the innate immune system have adapted to circumvent viral-encoded inhibitors.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , Evolution, Molecular , Nucleic Acids/genetics , Nucleotides, Cyclic/genetics , Alternative Splicing , Amino Acid Sequence , Animals , Immunity/genetics , Models, Genetic , Molecular Sequence Data , Primates/genetics , Primates/immunology , Protein Conformation , RNA, Double-Stranded/genetics , Sequence Analysis, DNA
13.
Proc Natl Acad Sci U S A ; 112(32): E4364-73, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26216977

ABSTRACT

Phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by eIF2α family kinases is a conserved mechanism to limit protein synthesis under specific stress conditions. The baculovirus-encoded protein PK2 inhibits eIF2α family kinases in vivo, thereby increasing viral fitness. However, the precise mechanism by which PK2 inhibits eIF2α kinase function remains an enigma. Here, we probed the mechanism by which PK2 inhibits the model eIF2α kinase human RNA-dependent protein kinase (PKR) as well as native insect eIF2α kinases. Although PK2 structurally mimics the C-lobe of a protein kinase domain and possesses the required docking infrastructure to bind eIF2α, we show that PK2 directly binds the kinase domain of PKR (PKR(KD)) but not eIF2α. The PKR(KD)-PK2 interaction requires a 22-residue N-terminal extension preceding the globular PK2 body that we term the "eIF2α kinase C-lobe mimic" (EKCM) domain. The functional insufficiency of the N-terminal extension of PK2 implicates a role for the adjacent EKCM domain in binding and inhibiting PKR. Using a genetic screen in yeast, we isolated PK2-activating mutations that cluster to a surface of the EKCM domain that in bona fide protein kinases forms the catalytic cleft through sandwiching interactions with a kinase N-lobe. Interaction assays revealed that PK2 associates with the N- but not the C-lobe of PKR(KD). We propose an inhibitory model whereby PK2 engages the N-lobe of an eIF2α kinase domain to create a nonfunctional pseudokinase domain complex, possibly through a lobe-swapping mechanism. Finally, we show that PK2 enhances baculovirus fitness in insect hosts by targeting the endogenous insect heme-regulated inhibitor (HRI)-like eIF2α kinase.


Subject(s)
Molecular Mimicry , Viral Proteins/chemistry , Viral Proteins/metabolism , eIF-2 Kinase/metabolism , Animals , Baculoviridae/physiology , Bombyx/virology , Cell Line , DNA Mutational Analysis , Models, Molecular , Mutation , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid , Structure-Activity Relationship
14.
Proc Natl Acad Sci U S A ; 112(14): E1773-81, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25831530

ABSTRACT

Interferon γ-inducible protein 16 (IFI16) and cGMP-AMP synthase (cGAS) have both been proposed to detect herpesviral DNA directly in herpes simplex virus (HSV)-infected cells and initiate interferon regulatory factor-3 signaling, but it has been unclear how two DNA sensors could both be required for this response. We therefore investigated their relative roles in human foreskin fibroblasts (HFFs) infected with HSV or transfected with plasmid DNA. siRNA depletion studies showed that both are required for the production of IFN in infected HFFs. We found that cGAS shows low production of cGMP-AMP in infected cells, but instead cGAS is partially nuclear in normal human fibroblasts and keratinocytes, interacts with IFI16 in fibroblasts, and promotes the stability of IFI16. IFI16 is associated with viral DNA and targets to viral genome complexes, consistent with it interacting directly with viral DNA. Our results demonstrate that IFI16 and cGAS cooperate in a novel way to sense nuclear herpesviral DNA and initiate innate signaling.


Subject(s)
Fibroblasts/metabolism , Herpes Simplex/metabolism , Nuclear Proteins/metabolism , Nucleotidyltransferases/metabolism , Phosphoproteins/metabolism , Simplexvirus/metabolism , Animals , Cytoplasm/metabolism , DNA/chemistry , Gene Expression Regulation , HEK293 Cells , Herpes Simplex/virology , Humans , Keratinocytes/metabolism , Mice , RNA, Small Interfering/metabolism , Signal Transduction , Transcription, Genetic
15.
PLoS Comput Biol ; 11(12): e1004572, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26625158

ABSTRACT

Existing methods for identifying structural variants (SVs) from short read datasets are inaccurate. This complicates disease-gene identification and efforts to understand the consequences of genetic variation. In response, we have created Wham (Whole-genome Alignment Metrics) to provide a single, integrated framework for both structural variant calling and association testing, thereby bypassing many of the difficulties that currently frustrate attempts to employ SVs in association testing. Here we describe Wham, benchmark it against three other widely used SV identification tools-Lumpy, Delly and SoftSearch-and demonstrate Wham's ability to identify and associate SVs with phenotypes using data from humans, domestic pigeons, and vaccinia virus. Wham and all associated software are covered under the MIT License and can be freely downloaded from github (https://github.com/zeeev/wham), with documentation on a wiki (http://zeeev.github.io/wham/). For community support please post questions to https://www.biostars.org/.


Subject(s)
Algorithms , Chromosome Mapping/methods , Genetic Association Studies/methods , Genetic Variation/genetics , Genome, Human/genetics , Genomic Structural Variation/genetics , Base Sequence , Humans , Molecular Sequence Data , Software
16.
Nature ; 457(7228): 485-9, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19043403

ABSTRACT

Distinguishing self from non-self is a fundamental biological challenge. Many pathogens exploit the challenge of self discrimination by employing mimicry to subvert key cellular processes including the cell cycle, apoptosis and cytoskeletal dynamics. Other mimics interfere with immunity. Poxviruses encode K3L, a mimic of eIF2alpha, which is the substrate of protein kinase R (PKR), an important component of innate immunity in vertebrates. The PKR-K3L interaction exemplifies the conundrum imposed by viral mimicry. To be effective, PKR must recognize a conserved substrate (eIF2alpha) while avoiding rapidly evolving substrate mimics such as K3L. Using the PKR-K3L system and a combination of phylogenetic and functional analyses, we uncover evolutionary strategies by which host proteins can overcome mimicry. We find that PKR has evolved under intense episodes of positive selection in primates. The ability of PKR to evade viral mimics is partly due to positive selection at sites most intimately involved in eIF2alpha recognition. We also find that adaptive changes on multiple surfaces of PKR produce combinations of substitutions that increase the odds of defeating mimicry. Thus, although it can seem that pathogens gain insurmountable advantages by mimicking cellular components, host factors such as PKR can compete in molecular 'arms races' with mimics because of evolutionary flexibility at protein interaction interfaces challenged by mimicry.


Subject(s)
Evolution, Molecular , Models, Biological , Molecular Mimicry , Poxviridae/physiology , Primates/genetics , Viral Proteins/metabolism , eIF-2 Kinase/chemistry , eIF-2 Kinase/metabolism , Amino Acid Sequence , Animals , Cell Line , Eukaryotic Initiation Factor-2B/chemistry , Eukaryotic Initiation Factor-2B/genetics , Eukaryotic Initiation Factor-2B/metabolism , Fibroblasts/virology , Humans , Molecular Sequence Data , Primates/virology , Protein Structure, Tertiary , Saccharomyces cerevisiae , Substrate Specificity , Viral Proteins/chemistry , Viral Proteins/genetics , eIF-2 Kinase/genetics
18.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-37873270

ABSTRACT

Coronaviruses exhibit many mechanisms of genetic innovation1-5, including the acquisition of accessory genes that originate by capture of cellular genes or through duplication of existing viral genes6,7. Accessory genes influence viral host range and cellular tropism, but little is known about how selection acts on these variable regions of virus genomes. We used experimental evolution of mouse hepatitis virus (MHV) encoding a cellular AKAP7 phosphodiesterase and an inactive native phosphodiesterase, NS2 (ref 8) to simulate the capture of a host gene and analyze its evolution. After courses of serial infection, the gene encoding inactive NS2, ORF2, unexpectedly remained intact, suggesting it is under cryptic constraint uncoupled from the function of NS2. In contrast, AKAP7 was retained under strong selection but rapidly lost under relaxed selection. Guided by the retention of ORF2 and similar patterns in related betacoronaviruses, we analyzed ORF8 of SARS-CoV-2, which arose via gene duplication6 and contains premature stop codons in several globally successful lineages. As with MHV ORF2, the coding-defective SARS-CoV-2 ORF8 gene remains largely intact, mirroring patterns observed during MHV experimental evolution, challenging assumptions on the dynamics of gene loss in virus genomes and extending these findings to viruses currently adapting to humans.

19.
Nat Commun ; 15(1): 5426, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926343

ABSTRACT

Zika and dengue virus nonstructural protein 5 antagonism of STAT2, a critical interferon signaling transcription factor, to suppress the host interferon response is required for viremia and pathogenesis in a vertebrate host. This affects viral species tropism, as mouse STAT2 resistance renders only immunocompromised or humanized STAT2 mice infectable. Here, we explore how STAT2 evolution impacts antagonism. By measuring the susceptibility of 38 diverse STAT2 proteins, we demonstrate that resistance arose numerous times in mammalian evolution. In four species, resistance requires distinct sets of multiple amino acid changes that often individually disrupt STAT2 signaling. This reflects an evolutionary ridge where progressive resistance is balanced by the need to maintain STAT2 function. Furthermore, resistance may come with a fitness cost, as resistance that arose early in lemur evolution was subsequently lost in some lemur lineages. These findings underscore that while it is possible to evolve resistance to antagonism, complex evolutionary trajectories are required to avoid detrimental host fitness consequences.


Subject(s)
Evolution, Molecular , STAT2 Transcription Factor , Viral Nonstructural Proteins , STAT2 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , Animals , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Humans , Mice , Dengue Virus/genetics , Dengue Virus/physiology , Zika Virus/genetics , Flavivirus/genetics , Flavivirus/physiology , Phylogeny , Host-Pathogen Interactions/genetics
20.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745432

ABSTRACT

Phosphodiesterases (PDEs) encoded by viruses are putatively acquired by horizontal transfer of cellular PDE ancestor genes. Viral PDEs inhibit the OAS-RNase L antiviral pathway, a key effector component of the innate immune response. Although the function of these proteins is well-characterized, the origins of these gene acquisitions is less clear. Phylogenetic analysis revealed at least five independent PDE acquisition events by ancestral viruses. We found evidence that PDE-encoding genes were horizontally transferred between coronavirus genera. Three clades of viruses within Nidovirales: merbecoviruses (MERS-CoV), embecoviruses (OC43), and toroviruses encode independently acquired PDEs, and a clade of rodent alphacoronaviruses acquired an embecovirus PDE via recent horizontal transfer. Among rotaviruses, the PDE of Rotavirus A was acquired independently from Rotavirus B and G PDEs, which share a common ancestor. Conserved motif analysis suggests a link between all viral PDEs and a similar ancestor among the mammalian AKAP7 proteins despite low levels of sequence conservation. Additionally, we used ancestral sequence reconstruction and structural modeling to reveal that sequence and structural divergence are not well-correlated among these proteins. Specifically, merbecovirus PDEs are as structurally divergent from the ancestral protein and the solved structure of human AKAP7 PDE as they are from each other. In contrast, comparisons of Rotavirus B and G PDEs reveal virtually unchanged structures despite evidence for loss of function in one, suggesting impactful changes that lie outside conserved catalytic sites. These findings highlight the complex and volatile evolutionary history of viral PDEs and provide a framework to facilitate future studies.

SELECTION OF CITATIONS
SEARCH DETAIL