Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Chem Rec ; 24(1): e202300145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37358343

ABSTRACT

The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high-performance electrode materials. Among the various EES devices, rechargeable batteries (RBs) with potential features like high energy density and extensive lifetime are well suited to meet rapidly increasing energy demands. Layered transition metal dichalcogenides (TMDs), typical two dimensional (2D) nanomaterial, are considered auspicious materials for RBs because of their layered structures and large specific surface areas (SSA) that benefit quick ion transportation. This review summarizes and highlights recent advances in TMDs with improved performance for various RBs. Through novel engineering and functionalization used for high-performance RBs, we briefly discuss the properties, characterizations, and electrochemistry phenomena of TMDs. We summarised that engineering with multiple techniques, like nanocomposites used for TMDs receives special attention. In conclusion, the recent issues and promising upcoming research openings for developing TMDs-based electrodes for RBs are discussed.

2.
Chem Rec ; 24(1): e202300141, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37724006

ABSTRACT

Electrical conductivity is very important property of nanomaterials for using wide range of applications especially energy applications. Metal-organic frameworks (MOFs) are notorious for their low electrical conductivity and less considered for usage in pristine forms. However, the advantages of high surface area, porosity and confined catalytic active sites motivated researchers to improve the conductivity of MOFs. Therefore, 2D electrical conductive MOFs (ECMOF) have been widely synthesized by developing the effective synthetic strategies. In this article, we have summarized the recent trends in developing the 2D ECMOFs, following the summary of potential applications in the various fields with future perspectives.

3.
Funct Integr Genomics ; 23(2): 119, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37022538

ABSTRACT

Genome editing is a useful, adaptable, and favored technique for both functional genomics and crop enhancement. Over the years, rapidly evolving genome editing technologies, including clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas), transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs), have shown broad application prospects in gene function research and improvement of critical agronomic traits in many crops. These technologies have also opened up opportunities for plant breeding. These techniques provide excellent chances for the quick modification of crops and the advancement of plant science in the future. The current review describes various genome editing techniques and how they function, particularly CRISPR/Cas9 systems, which can contribute significantly to the most accurate characterization of genomic rearrangement and plant gene functions as well as the enhancement of critical traits in field crops. To accelerate the use of gene-editing technologies for crop enhancement, the speed editing strategy of gene-family members was designed. As it permits genome editing in numerous biological systems, the CRISPR technology provides a valuable edge in this regard that particularly captures the attention of scientists.


Subject(s)
CRISPR-Cas Systems , Genetic Engineering , Plants, Genetically Modified/genetics , Genetic Engineering/methods , Genome, Plant , Plant Breeding/methods , Crops, Agricultural/genetics , Technology
4.
Molecules ; 28(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175093

ABSTRACT

Due to significant advancements being made in the field of drug design, the use of topological descriptors remains the primary approach. When combined with QSPR models, descriptors illustrate a molecule's chemical properties numerically. Numbers relating to chemical composition topological indices are structures that link chemical composition to physical characteristics. This research concentrates on the analysis of curvilinear regression models and degree-based topological descriptors for thirteen skin cancer drugs. The physicochemical characteristics of the skin cancer drugs are examined while regression models are built for computed index values. An analysis is performed for several significant results based on the acquired data.


Subject(s)
Antineoplastic Agents , Skin Neoplasms , Humans , Skin Neoplasms/drug therapy , Quantitative Structure-Activity Relationship
5.
Molecules ; 28(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37110553

ABSTRACT

Lithium-ion batteries (LIBs) have been explored to meet the current energy demands; however, the development of satisfactory anode materials is a bottleneck for the enhancement of the electrochemical performance of LIBs. Molybdenum trioxide (MoO3) is a promising anode material for lithium-ion batteries due to its high theoretical capacity of 1117 mAhg-1 along with low toxicity and cost; however, it suffers from low conductivity and volume expansion, which limits its implementation as the anode. These problems can be overcome by adopting several strategies such as carbon nanomaterial incorporation and polyaniline (PANI) coating. Co-precipitation method was used to synthesize α-MoO3, and multi-walled CNTs (MWCNTs) were introduced into the active material. Moreover, these materials were uniformly coated with PANI using in situ chemical polymerization. The electrochemical performance was evaluated by galvanostatic charge/discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). XRD analysis revealed the presence of orthorhombic crystal phase in all the synthesized samples. MWCNTs enhanced the conductivity of the active material, reduced volume changes and increased contact area. MoO3-(CNT)12% exhibited high discharge capacities of 1382 mAhg-1 and 961 mAhg-1 at current densities of 50 mAg-1 and 100 mAg-1, respectively. Moreover, PANI coating enhanced cyclic stability, prevented side reactions and increased electronic/ionic transport. The good capacities due to MWCNTS and the good cyclic stability due to PANI make these materials appropriate for application as the anode in LIBs.

6.
Sci Rep ; 13(1): 7421, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37156899

ABSTRACT

There are numerous contagious diseases caused by pathogenic microorganisms, including bacteria, viruses, fungi, and parasites, that have the propensity to culminate in fatal consequences. A communicable disease is an illness caused by a contagion agent or its toxins and spread directly or indirectly to a susceptible animal or human host by an infected person, animal, vector, or immaterial environment. Human immunodeficiency virus (HIV) infection, hepatitis A, B, and C, and measles are all examples of communicable diseases. Acquired immunodeficiency syndrome (AIDS) is a communicable disease caused by HIV infection that has become the most severe issue facing humanity. The research work in this paper is to numerically explore a mathematical model and demonstrate the dynamics of HIV/AIDS disease transmission using a continuous Galerkin-Petrov time discretization of a higher-order scheme, specifically the cGP(2)-scheme. Depict a graphical and tabular comparison between the outcomes of the mentioned scheme and those obtained through other classical schemes that exist in the literature. Further, a comparison is performed relative to the well-known fourth-order Ruge-Kutta (RK4) method with different step sizes. By contrast, the suggested approach provided more accurate results with a larger step size than RK4 with a smaller step size. After validation and confirmation of the suggested scheme and code, we implement the method to the extended model by introducing a treatment rate and show the impact of various non-linear source terms for the generation of new cells. We also determined the basic reproduction number and use the Routh-Hurwitz criterion to assess the stability of disease-free and unique endemic equilibrium states of the HIV model.


Subject(s)
Acquired Immunodeficiency Syndrome , Communicable Diseases , HIV Infections , Animals , Humans , Acquired Immunodeficiency Syndrome/epidemiology , Models, Theoretical , Basic Reproduction Number
7.
Sci Prog ; 106(2): 368504231180032, 2023.
Article in English | MEDLINE | ID: mdl-37317528

ABSTRACT

APPLICATIONS: The dynamics of superior heat transport fluids are of much interest and dominant over traditional fluids. Applications of such fluids can be found in advanced medical sciences, to maintain the building temperature, environmental sciences, chemical engineering, food engineering, and other applied research areas where enhanced heat transfer is required. AIM AND RESEARCH METHODOLOGY: The major aim of this research is to report the thermal performance of the Glycerin-titania nanofluid using a thermal conductivity model comprising the effects of nanoparticles aggregation, and CCTF over a permeable slanted surface. The enhanced heat transport model was then analyzed numerically via RK scheme and furnished the outcomes with graphical aid under the variations of physical parameters. CORE FINDINGS: It is examined that the addition of CCTF (A1) in the model potentially contributes to thermal performance of aggregated nanofluid. The temperature ß(η) enhances for injecting fluid from the surface and reduces due to strong suction. Further, the fluid particles attained maximum velocity for γ1=0.1,0.2,0.3,0.4 at the surface and it shows asymptotic behavior far from the working domain.

8.
PLoS One ; 18(6): e0284862, 2023.
Article in English | MEDLINE | ID: mdl-37310974

ABSTRACT

Zadeh's Z̆-numbers are able to more effectively characterize uncertain information. Combined with "constraint" and "reliability". It is more powerful at expressing human knowledge. While the reliability of data can have a direct impact on the precision of decisions. The key challenge in solving a Z̆-number issue is reasoning about both fuzzy and probabilistic uncertainty. Existing research on the Z̆-number measure is only some, and most studies cannot adequately convey the benefits of Z̆-information and the properties of Z̆-number. Considering this study void, this work concurrently investigated the randomness and fuzziness of Z̆-number with Spherical fuzzy sets. We first introduced the spherical fuzzy Z-numbers (SFZNs), whose elements are pairwise comparisons of the decision-maker's options. It can be used effectively to make true ambiguous judgments, reflecting the fuzzy nature, flexibility, and applicability of decision making data. We developed the operational laws and aggregation operators such as the weighted averaging operator, the ordered weighted averaging operator, the hybrid averaging operator, the weighted geometric operator, the ordered weighted geometric operator, and the hybrid geometric operator for SFZ̆Ns. Furthermore, two algorithm are developed to tackle the uncertain information in the form of spherical fuzzy Z̆-numbers based to the proposed aggregation operators and TODIM methodology. Finally, we developed the relative comparison and discussion analysis to show the practicability and efficacy of the suggested operators and approach.


Subject(s)
Algorithms , Economic Development , Humans , Judgment , Knowledge , Policy
9.
PLoS One ; 18(6): e0283754, 2023.
Article in English | MEDLINE | ID: mdl-37339130

ABSTRACT

The world has a lot of want for energy due to the rapid pace of its consumption. The world's energy resources, especially non-renewable sources, are vanishing by leaps and bounds. However, agencies like the Paris Climate Agreement and the United Nations Sustainable development have defined some preventive measures to consider while consuming energy. The main issue in Pakistan is that the consumer is not supplied with electric power in a managed way, and the way of installation causes a lot of impairment to the expensive tools in the power distribution system. The motivation of this research focuses on energy management, making the distribution authority more powerful, digitalization, and protection of expensive components in electrical power systems. The proposed methodology uses current and voltage sensors to remotely monitor the amount of power being supplied to the consumer continuously, along with a microcontroller responsible for activating the relay in case of over-consumption and the Global System for Mobile (GSM) network to warn the consumer and inform the authority. This research work prevents manual and laborious meter readings and protects electrical instruments. Further, this work can enable online billing, pre-paid billing, and energy saving and provide a base for power theft detection.


Subject(s)
Internet of Things , Climate , Electricity , Group Processes , Renewable Energy
10.
Sci Rep ; 13(1): 11615, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464012

ABSTRACT

Water plays a key role in the economic growth of an agricultural country. Pakistan is a farming country that uses almost 90% of its water resources for agriculture. Khyber Pakhtunkhwa (KPK) province of Pakistan has extensive surface water resources. In addition to using groundwater resources for irrigation, large parts of its flat plains are irrigated with the Kabul River surface water. Due to large population growth and unregulated small/local scale industries in the region, surface water quality deteriorates with time, which affects people's health when polluted surface water is used for irrigation purposes. This research investigates the surface water quality of Kabul River's different tributaries. It identifies the most critical and vulnerable locations regarding water quality using the weightage-based identification method and distance-based iteration method, respectively. The Bara River exhibited the most critical location, surpassing the threshold values by a considerable margin in at least seven water quality parameters. The maximum seven critical values determined against the Bara River using the weightage-based method, i.e., 17.5, 5.95, 7.35, 27.65, 1.75, 0.35, and 10.45 for total alkalinity, sodium, total hardness, magnesium, total suspended solids, biological oxygen demand (BOD), and turbidity. The Khairabad station, where the Kabul River meets the Indus River, was identified as vulnerable due to elevated levels of total suspended solids, hardness, sulfate, sodium, and magnesium using distance-based methods. The locations, i.e. Adezai, Jindi, Pabbi, and Warsak Dam, appeared critical and vulnerable due to the prevalence of small-scale industries on their bank and high population densities. All the results are finally compared with the interpolated values over the entire region using Kriging interpolation to identify critical and vulnerable areas accurately. The results from the distance and weightage-based methods aligned with the physical reality on the ground further validate the results. The critical and vulnerable locations required immediate attention and preventive measures to address the deteriorating water quality parameters by installing monitoring stations and treatment plants to stop further contamination of the particular parameter.

11.
J Adv Res ; 54: 77-88, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36738988

ABSTRACT

INTRODUCTION: Flow dynamics due to the peristaltic pumping has been the topic of great interest for the researchers. But numerical and analytical analyses for the peristaltic motion are limited where flow domain is deformed real-time. Research on peristalsis has a limitation where theoretical aspects of walls motion are considered, neglecting the real time deformation of the walls. OBJECTIVES: This paper aims to propose a more reliable and accurate numerical methodology for peristaltic motions to address the above-mentioned challenge. Stream traces, velocities, and pressure drops along the tube is to be visualized more accurately. METHODS: In present study a finite volume based dynamic mesh motion method is adopted to analyze the peristaltic motion of a non-Newtonian Quemada fluid in an axisymmetric channel. The walls and interior domain of the channel is dynamically deformed for a sinusoidal wave traveling on boundary. RESULTS: Simulation of unsteady flow behavior for time t=0s to 2s and amplitude ratio Φ=0.2,0.4,and0.6. predicts fluid trapping phenomenon. Rotation of fluid particles is more prominent for higher amplitude ratios. Pressure gradient increases with increasing amplitude ratios. CONCLUSION: A novel dynamic mesh method is proposed for peristaltic pumping. It provides more accurate and more physical results for stream traces; pressure drops and velocities along the tube. A limited case of the study validates the theoretical and analytical results already presented in literature; hence the method is reliable.

12.
Sci Rep ; 13(1): 9694, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37322099

ABSTRACT

In a porous medium, we have examined sinusoidal two-dimensional transport enclosed porous peristaltic boundaries having an Eyring Powell fluid with a water containing [Formula: see text]. The determining momentum and temperature equations are solved semi-analytically by using regular perturbation method and Mathematica. In present research only free pumping case and small amplitude ratio is studied. Mathematical and pictorial consequences are investigated for distinct physical parameters of interest like porosity, viscosity, volume fraction and permeability to check the effects of flow velocity and temperature.


Subject(s)
Peristalsis , Porosity , Temperature , Viscosity , Motion
13.
RSC Adv ; 13(3): 1955-1963, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36712603

ABSTRACT

Materials such as oxide and halide perovskites that simultaneously exhibit spontaneous polarization and absorption of visible light are called photoferroelectrics. They hold great promise for the development of applications in optoelectronics, information storage, and energy conversion. Devices based on ferroelectric photovoltaic materials yield an open-circuit voltage that is much higher than the band gap of the corresponding active material owing to a strong internal electric field. Their efficiency has been proposed to exceed the Shockley-Queisser limit for ideal solar cells. In this paper, we present theoretical calculations of the photovoltaic properties of the ferroelectric phase of the inorganic germanium halide perovskite (CsGeI3). Firstly, the electronic, optical and ferroelectric properties were calculated using the FP-LAPW method based on density functional theory, and the modern theory of polarization based on the Berry phase approach, respectively. The photovoltaic performance was evaluated using the Spectroscopic Limited Maximum Efficiency (SLME) model based on the results of first-principles calculations, in which the power conversion efficiency and the photocurrent density-voltage (J-V) characteristics were estimated. The calculated results show that the valence band maximum (VBM) of CsGeI3 is mainly contributed by the I-5p and Ge-4s orbitals, whereas the conduction band is predominantly derived from Ge-4p orbitals. It can be seen that CsGeI3 exhibits a direct bandgap semiconductor at the symmetric point of Z with a value of 1.53 eV, which is in good agreement with previous experimental results. The ferroelectric properties were therefore investigated. With a switching energy barrier of 19.83 meV per atom, CsGeI3 has a higher theoretical ferroelectric polarization strength of 15.82 µC cm-2. The SLME calculation also shows that CsGeI3 has a high photoelectric conversion efficiency of over 28%. In addition to confirming their established favorable band gap and strong absorption, we demonstrate that CsGeI3 exhibits a large shift current bulk photovoltaic effect of up to 40 µA V-2 in the visible region. Thus, this material is a potential ferroelectric photovoltaic absorbed layer with high efficiency.

14.
Heliyon ; 9(7): e17673, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449139

ABSTRACT

The transfer of heat is a phenomenon that is significant in a variety of contexts due to the different ways in which it may be utilized in industrial settings. To increase the rate at which heat is transferred, carbon nanotubes (CNTs), which can either be single-wall or multi-walled, are suspended in base fluids, and the resulting mixture is referred to as a "nanofluid. This study looks at how heat transfers through nanofluids that are suspended in carbon nanotubes with different lengths and radii over a stretching surface. It also looks at how changing viscosity and joule heating affect motion. Water is taken as base fluid. This study looks at both carbon nanotubes with one wall and those with more than one. The flow is governed by a series of partial differential equations, which, to control the flow, are transformed into a series of nonlinear ordinary differential equations. Similarity transformation is used to convert the obtained nonlinear ordinary differential equations and accompanying boundary conditions into a form that is dimensionless. To numerically solve the transformed equation, RK-4 with shooting method is used. Graphs and in-depth discussions are used to look at how velocity and temperature profiles are affected by the leading variables. The expression for skin friction and local Nusselt number are written down and graphs show how these two numbers change for different parameter values. The temperature profile goes down when the viscosity parameter goes down, but the velocity profile goes up. When the magnetic parameter goes up, the velocity profile f'(η), goes down, but the velocity profile g(η) and temperature θ(η) both go up at the same time. The rate of heat transfer increases with the addition of φ and S. When the suction parameter (S = 2.1) with 1% of φ is used, it is reported that rate of heat transfer increases by 1.135% for Single walled and 1.275% for Multi Walled carbon nanotubes. To determine whether or not the proposed numerical model is legitimate, a comparison is made between the current results and those that have previously been published.

15.
Sci Rep ; 13(1): 19643, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37949950

ABSTRACT

The heat and mass transfer through the third grade fluid (TGF) flow over an inclined elongating sheet with the consequences of magnetic field and chemical reaction is reported. The impact of activation energy, heat source/sink, and thermal radiation is considered on the TGF flow. Fluid that demonstrate non-Newtonian (NN) properties such as shear thickening, shear thinning, and normal stresses despite the fact that the boundary is inflexible is known as TGF. It also has viscous elastic fluid properties. In the proposed model, the TGF model is designed in form of nonlinear coupled partial differential equations (PDEs). Before employing the numerical package bvp4c, the system of coupled equations are reduced into non-dimensional form. The finite-difference code bvp4c, in particular, executes the Lobatto three-stage IIIa formula. The impacts of flow constraints on velocity field, energy profile, Nusselt number and skin friction are displayed through Tables and Figures. For validity of the results, the numerical comparison with the published study is performed through Table. From graphical results, it can be perceived that the fluid velocity enriches with the variation of TGF factor and Richardson number. The heat source parameter operational as a heating mediator for the flow system, its influence enhances the fluid temperature.

16.
Sci Rep ; 13(1): 7140, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37130898

ABSTRACT

Better electrical insulation and thermal properties of vegetable oil with nanoparticles are crucial for its uses as a replacement for conventional previous lubricants used in heavy and light industries for cutting and machining. In this study, a magnetohydrodynamic (MHD) flow of a Brinkman-type nanofluid is used to investigate an infinite vertical plate with chemical reaction, heat radiation, and MHD flow. In order to improve the machining and cutting powers of regular vegetable oil, four distinct types of nanoparticles were selected to be the base fluid. The problem is modeled by coupled system partial differential equations (PDEs), and the results are generalized by the Caputo-Fabrizio fractional differential operator for the exponential non-singular kernel. In order to prepare nanofluids, four different types of nanoparticles, namely graphene oxide (GO), molybdenum disulfide (MoS2), titanium dioxide (TiO2), and aluminum oxide (Al2O3) are suspended separately in vegetable oil. The results of skin friction, the Nusselt number, and the Sherwood number are computed in various tables. It is found that GO nanoparticles, (followed by MoS2, TiO2, and Al2O3) are the materials that can heat transfer at the maximum rate. The heat transfer rate for GO is found to be the greatest with an enhancement up to 19.83% when 4% of nanoparticles are dispersed, followed by molybdenum disulfide at 16.96%, titanium dioxide at 16.25%, and alumina at 15.80%.

17.
Heliyon ; 9(10): e20703, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37867845

ABSTRACT

Greenfield investment is considered the backbone of emerging economies and developing countries. This research is carried out to investigate the causal impact of Greenfield investment as a target variable and some other controlled variables for the sample of 23 Latin American and Caribbean (LA&C) developing countries. The period is 1998-2017, and Levin, Lin and Chu (LLC) and System-Generalized Method of Moment (Sys-GMM) techniques are employed for analytical analysis. The Sys-GMM technique estimates show that Greenfield investment has a significant positive impact on these countries' economic growth, health, education, and welfare. Furthermore, controlled variables remittances have a significant and positive impact, while foreign aid has a negative effect on the dependent variables. The rest of the other controlled variables show mixed results. From the analysis, it is suggested that Greenfield investment has improved per capita income, education and health sector that further enhanced the welfare of the society. In addition, new foreign investment creates job employment and brings innovations that improve labour skills. On the other hand, foreign aid must be avoided, which harms the economic activities of developing countries. Therefore, it is concluded that governments of Latin American and Caribbean developing countries adopt more friendly policies to attract Greenfield investment.

18.
Heliyon ; 9(6): e17538, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37408888

ABSTRACT

It is still not quite apparent how suspended nanoparticles improve heat transmission. Multiple investigations have demonstrated that the aggregation of nanoparticles is a critical step in improving the thermal conductivity of nanofluids. However, the thermal conductivity of the nanofluid would be greatly affected by the fractal dimension of the nanoparticle aggregation. The purpose of this research is to learn how nanoparticle aggregation, joule heating, and a heat source affect the behavior of an ethylene glycol-based nanofluid as it flows over a permeable, heated, stretched vertical Riga plate and through a porous medium. Numerical solutions to the present mathematical model were obtained using Mathematica's Runge-Kutta (RK-IV) with shooting technique. In the stagnation point flow next to a permeable, heated, extending Riga plate, heat transfer processes and interrupted flow phenomena are defined and illustrated by diagrams in the proposed mixed convection, joule heating, and suction variables along a boundary surface. Data visualizations showed how different variables affected temperature and velocity distributions, skin friction coefficient, and the local Nusselt number. The rates of heat transmission and skin friction increased when the values of the suction parameters were raised. The temperature profile and the Nusselt number both rose because of the heat source setting. The increase in skin friction caused by changing the nanoparticle volume fraction from φ=0.0 to φ=0.01 for the without aggregation model was about 7.2% for the case of opposing flow area (λ=-1.0) and 7.5% for the case of aiding flow region (λ=1.0). With the aggregation model, the heat transfer rate decreases by approximately 3.6% for cases with opposing flow regions (λ=-1.0) and 3.7% for cases with assisting flow regions (λ=1.0), depending on the nanoparticle volume fraction and ranging from φ=0.0 to φ=0.01, respectively. Recent findings were validated by comparing them to previously published findings for the same setting. There was substantial agreement between the two sets finding.

19.
Sci Rep ; 13(1): 10725, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400576

ABSTRACT

Cooling and heating are two critical processes in the transportation and manufacturing industries. Fluid solutions containing metal nanoparticles have higher thermal conductivity than conventional fluids, allowing for more effective cooling. Thus, the current paper is a comparative exploration of the time-independent buoyancy opposing and heat transfer flow of alumina nanoparticles scattered in water as a regular fluid induced via a vertical cylinder with mutual effect of stagnation-point and radiation. Based on some reasonable assumptions, the model of nonlinear equations is developed and then tackled numerically employing the built-in bvp4c MATLAB solver. The impacts of assorted control parameters on gradients are investigated. The outcomes divulge that the aspect of friction factor and heat transport upsurge by incorporating alumina nanoparticles. The involvement of the radiation parameter shows an increasing tendency in the heat transfer rate, resulting in an enhancement in thermal flow efficacy. In addition, the temperature distribution uplifts due to radiation and curvature parameters. It is discerned that the branch of dual outcomes exists in the opposing flow case. Moreover, for higher values of the nanoparticle volume fraction, the reduced shear stress and the reduced heat transfer rate increased respectively by almost 1.30% and 0.0031% for the solution of the first branch, while nearly 1.24%, and 3.13% for the lower branch solution.

20.
Sci Rep ; 13(1): 10770, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37402783

ABSTRACT

The current research presents a novel and sustainable load-bearing system utilizing cellular lightweight concrete block masonry walls. These blocks, known for their eco-friendly properties and increasing popularity in the construction industry, have been studied extensively for their physical and mechanical characteristics. However, this study aims to expand upon previous research by examining the seismic performance of these walls in a seismically active region, where cellular lightweight concrete block usage is emerging. The study includes the construction and testing of multiple masonry prisms, wallets, and full-scale walls using a quasi-static reverse cyclic loading protocol. The behavior of the walls is analyzed and compared in terms of various parameters such as force-deformation curve, energy dissipation, stiffness degradation, deformation ductility factor, response modification factor, and seismic performance levels, as well as rocking, in-plane sliding, and out-of-plane movement. The results indicate that the use of confining elements significantly improves the lateral load capacity, elastic stiffness, and displacement ductility factor of the confined masonry wall in comparison to an unreinforced masonry wall by 102%, 66.67%, and 5.3%, respectively. Overall, the study concludes that the inclusion of confining elements enhances the seismic performance of the confined masonry wall under lateral loading.

SELECTION OF CITATIONS
SEARCH DETAIL