ABSTRACT
Although the functional trait approach can facilitate the understanding of mechanisms that underline community responses to habitat alteration, only a few studies used this way on exploring the structure of insect assemblages compared to taxon-based analyses. We compared the descriptive power of medium-term effects (2014-2018) of forestry treatments in a temperate managed oak-dominated forest on taxon- vs. trait-based descriptors of ground beetle assemblages. The treatments included rotation forestry (partial preparation cutting, clear-cutting, retention-tree group, and mature closed forest as control) and continuous cover forestry (gap cutting) operations. The species composition was only slightly influenced by the treatments; on the ordination biplot, the control, retention tree group, and clear-cutting treatments formed relatively homogeneous groups, well separated from each other, while the others were scattered randomly in the ordination space. Over time, the species richness decreased in all treatments, but it was higher in the retention tree group treatment than in others in 2016 and 2017. The activity density also declined between years, but an immediate mass effect was revealed after the implementation of treatment types especially in the control, gap, and preparation cuts. We found that assemblages in the clear-cutting and retention-tree group had similar characteristics: high functional diversity; more open-habitat, generalist, and omnivore species and fewer carnivore species; while those in the control, gap, and preparation cutting groups had the opposite: lower functional diversity, more forest species, and more carnivorous species. Our findings will demonstrate that the simultaneous use of the two approaches will allow the most articulate understanding of the status of ground beetles assemblages in managed forests.
Subject(s)
Biodiversity , Coleoptera , Animals , Coleoptera/physiology , Ecosystem , Forestry , Forests , TreesABSTRACT
Female-only colour polymorphism is rare in birds, but occurs in brood parasitic cuckoos (Cuculidae). Obligate brood parasites leave incubation and parental care to other species (hosts), so female-female interactions can play a role in how parasites guard critical resources (host nests) within their laying areas. The plumage of adult female common cuckoos (Cuculus canorus) is either rufous (typically rare) or grey (common), whereas adult male conspecifics are monochromatic (grey). In previous studies, hosts and conspecific males responded with less intensity toward the rare female morph in support of a negative frequency-dependent benefit of female plumage polychromatism. Here, we assessed responses of both conspecific females and males to vocal playbacks of female calls, coupled with one of two 3D models of the different morphs of female cuckoos. At our study population, the rufous female morph was as common as the grey morph; therefore, we predicted similarly high rates of conspecific responses in both treatments. Both female and male cuckoos responded to playbacks acoustically, which demonstrated the primary role of acoustic communication in social interactions amongst cuckoos. Following this, some cuckoos flew closer to the models to inspect them visually. As predicted, no significant differences were detected between the live cuckoos' responses toward the two colour morphs in this population. We conclude that dichromatism in female cuckoos evolved to serve one or more functions other than conspecific signalling.
Subject(s)
Aggression/physiology , Behavior, Animal/physiology , Birds/physiology , Pigmentation/physiology , Animals , Female , Male , Songbirds/parasitology , Vocalization, AnimalABSTRACT
Simultaneously enhancing ecosystem services provided by biodiversity below and above ground is recommended to reduce dependence on chemical pesticides and mineral fertilisers in agriculture. However, consequences for crop yield have been poorly evaluated. Above ground, increased landscape complexity is assumed to enhance biological pest control, whereas below ground, soil organic carbon is a proxy for several yield-supporting services. In a field experiment replicated in 114 fields across Europe, we found that fertilisation had the strongest positive effect on yield, but hindered simultaneous harnessing of below- and above-ground ecosystem services. We furthermore show that enhancing natural enemies and pest control through increasing landscape complexity can prove disappointing in fields with low soil services or in intensively cropped regions. Thus, understanding ecological interdependences between land use, ecosystem services and yield is necessary to promote more environmentally friendly farming by identifying situations where ecosystem services are maximised and agrochemical inputs can be reduced.
Subject(s)
Agrochemicals/adverse effects , Crops, Agricultural/growth & development , Ecosystem , Pest Control, Biological , Crops, Agricultural/drug effects , Ecology , EuropeABSTRACT
In many bird species loud broadcast calls serve as aggressive signals with a large effective radius, whereas soft calls may indicate aggression at a closer distance, and are often directed at a nearby conspecific individual. Male common cuckoos (Cuculus canorus) are famous for their simple cu-coo calls, which are long-range broadcast calls, uttered in long sequences during the breeding season. Cuckoos also produce soft calls, including a single gowk (wah), a series of gowks (gowk series), or a harsher single variant, the guo call. To our knowledge, no previous study has attempted to understand the function of cuckoos' soft calls. We conducted a sequential playback experiment by (i) first attracting male cuckoos with "cu-coo" calls, and then (ii) playing heterospecific control calls or one of several types of cuckoo soft calls. While the "cu-coo" call attracted focal males, neither the soft conspecific calls nor the heterospecific control calls elicited an additional response. Finally, the gowk series calls did not alter cuckoos' approach to the speaker when played together with "cu-coo" calls. As cuckoos' soft calls did not increase or decrease aggression, they instead may advertise the cuckoo's presence and position for a nearby conspecific.
Subject(s)
Vocalization, Animal , Animals , Male , Vocalization, Animal/physiology , Birds/physiology , Territoriality , AggressionABSTRACT
BACKGROUND: Cereal storage proteins represent one of the most important sources of protein for food and feed and they are coded by multigene families. The expression of the storage protein genes exhibits a temporal fluctuation but also a response to environmental stimuli. Analysis of temporal gene expression combined with genetic variation in large multigene families with high homology among the alleles is very challenging. RESULTS: We designed a rapid qRT-PCR system with the aim of characterising the variation in the expression of hordein genes families. All the known D-, C-, B-, and γ-hordein sequences coding full length open reading frames were collected from commonly available databases. Phylogenetic analysis was performed and the members of the different hordein families were classified into subfamilies. Primer sets were designed to discriminate the gene expression level of whole families, subfamilies or individual members. The specificity of the primer sets was validated before successfully applying them to a cDNA population derived from developing grains of field grown Hordeum vulgare cv. Barke. The results quantify the number of moles of transcript contributed to a particular gene family and its subgroups. More over the results indicate the genotypic specific gene expression. CONCLUSIONS: Quantitative RT-PCR with SYBR Green labelling can be a useful technique to follow gene expression levels of large gene families with highly homologues members. We showed variation in the temporal expression of genes coding for barley storage proteins. The results imply that our rapid qRT-PCR system was sensitive enough to identify the presence of alleles and their expression profiles. It can be used to check the temporal fluctuations in hordein expressions or to find differences in their response to environmental stimuli. The method could be extended for cultivar recognition as some of the sequences from the database originated from cv. Golden Promise were not expressed in the studied barley cultivar Barke although showed primer specificity with their cloned DNA sequences.
Subject(s)
Glutens/genetics , Hordeum/genetics , Multigene Family , Reverse Transcriptase Polymerase Chain Reaction , Seeds/growth & development , Alleles , Base Sequence , DNA Primers , DNA, Complementary/genetics , DNA, Plant/genetics , Databases, Genetic , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Glutens/metabolism , Hordeum/growth & development , Hordeum/metabolism , Open Reading Frames , Phylogeny , RNA, Messenger/genetics , RNA, Plant/genetics , Seeds/genetics , Seeds/metabolism , Sensitivity and Specificity , Sequence Homology, Nucleic Acid , TranscriptomeABSTRACT
Movement trajectories are usually recorded as a sequence of discrete movement events described by two parameters: step length (distance) and turning angle (bearing). One of the most widespread methods to record the geocoordinates of each step is by a GPS device. Such devices have limited suitability for recording fine movements of species with low dispersal ability including flightless carabid beetles at small spatio-temporal scales. As an alternative, the distance-bearing approach can avoid the measurement error of GPS units since it uses directly measured distances and compass azimuths. As no quantification of measurement error between distance-bearing and GPS approaches exists so far, we generated artificial fine-scale trajectories and in addition radio-tracked living carabids in a temperate forest and recorded each movement step by both methods. Trajectories obtained from distance-bearing were compared to those obtained by a GPS device in terms of movement parameters. Consequently, both types of trajectories were segmented by state-switching modeling into two distinct movement stages typical for carabids: random walk and directed movement. We found that the measurement error of GPS compared to distance-bearing was 1.878 m (SEM = 0.181 m) for distances and 31.330° (SEM = 2.066°) for bearings. Moreover, these errors increased under dense forest canopy and rainy weather. Distance error did not change with increasing distance recorded by distance-bearing but bearings were significantly more sensitive to error at short distances. State-switching models showed only slight, not significant, differences in movement states between the two methods in favor of the random walk in the distance-bearing approach. However, the shape of the GPS-measured trajectories considerably differed from those recorded by distance-bearing caused especially by bearing error at short distances. Our study showed that distance-bearing could be more appropriate for recording movement steps not only of ground-dwelling beetles but also other small animals at fine spatio-temporal scales.
ABSTRACT
Morphometric research is being applied to a growing number and variety of organisms. Discoveries achieved via morphometric approaches are often considered highly transferable, in contrast to the tacit and idiosyncratic interpretation of discrete character states. The reliability of morphometric workflows in insect systematics has never been a subject of focused research, but such studies are sorely needed. In this paper, we assess the reproducibility of morphometric studies of ants where the mode of data collection is a shared routine.We compared datasets generated by eleven independent gaugers, that is, collaborators, who measured 21 continuous morphometric traits on the same pool of individuals according to the same protocol. The gaugers possessed a wide range of morphometric skills, had varying expertise among insect groups, and differed in their facility with measuring equipment. We used intraclass correlation coefficients (ICC) to calculate repeatability and reproducibility values (i.e., intra- and intergauger agreements), and we performed a multivariate permutational multivariate analysis of variance (PERMANOVA) using the Morosita index of dissimilarity with 9,999 iterations.The calculated average measure of intraclass correlation coefficients of different gaugers ranged from R = 0.784 to R = 0.9897 and a significant correlation was found between the repeatability and the morphometric skills of gaugers (p = 0.016). There was no significant association with the magnification of the equipment in the case of these rather small ants. The intergauger agreement, that is the reproducibility, varied between R = 0.872 and R = 0.471 (mean R = 0.690), but all gaugers arrived at the same two-species conclusion. A PERMANOVA test revealed no significant gauger effect on species identity (R 2 = 0.69, p = 0.58).Our findings show that morphometric studies are reproducible when observers follow the standard protocol; hence, morphometric findings are widely transferable and will remain a valuable data source for alpha taxonomy.
ABSTRACT
To secure the ecosystem services forests provide, it is important to understand how different management practices impact various components of these ecosystems. We aimed to uncover how silvicultural treatments affected the ground-dwelling spider communities during the first five years of a forest ecological experiment. In an oak-hornbeam forest stand, five treatments, belonging to clear-cutting, shelterwood and continuous cover forestry systems, were implemented using randomised complete block design. Spiders were sampled by pitfall traps, and detailed vegetation, soil and microclimate data were collected throughout the experiment. In the treatment plots spider abundance and species richness increased marginally. Species composition changes were more pronounced and treatment specific, initially diverging from the control plots, but becoming more similar again by the fifth year. These changes were correlated mostly to treatment-related light intensity and humidity gradients. The patchy implementation of the treatments induced modest increase in both gamma and beta diversity of spiders in the stand. Overall, spiders gave a prompt and species specific response to treatments that was by the fifth year showing signs of relatively quick recovery to pre-treatment state. At the present fine scale of implementation the magnitude of changes was not different among forestry treatments, irrespective of their severity.
ABSTRACT
Agricultural intensification is one of the major drivers of biotic homogenization and has multiple levels ranging from within-field management intensity to landscape-scale simplification. The enhancement of invertebrate assemblages by establishing new, semi-natural habitats, such as set-aside fields can improve biological pest control in adjacent crops, and mitigate the adverse effect of biotic homogenization. In this study we aimed to examine the effects of ecological intensification in winter wheat fields in Hungary. We tested how pests and their natural enemies were affected at different spatial scales by landscape composition (proportion of semi-natural habitats in the surrounding matrix), configuration (presence of adjacent set-aside fields), and local field management practices, such as fertilizer (NPK) applications without applying insecticides. We demonstrated that at the local scale, decreased fertilizer usage had no direct effect either on pests or their natural enemies. Higher landscape complexity and adjacent semi-natural habitats seem to be the major drivers of decreasing aphid abundance, suggesting that these enhanced the predatory insect assemblages. Additionally, the high yield in plots with no adjacent set-aside fields suggests that intensive management can compensate for the lower yields on the extensive plots. Our results demonstrated that although complexity at the landscape scale was crucial for maintaining invertebrate assemblages, divergence in their response to pests and pathogens could also be explained by different dispersal abilities. Although the landscape attributes acted as dispersal filters in the organization of pest and pathogen assemblages in croplands, the presence of set-aside fields negatively influenced aphid abundance due to their between-field isolation effect.
ABSTRACT
The common cuckoo (Cuculus canorus) is an avian brood parasite, laying its eggs in the nests of other bird species, where these hosts incubate the parasitic eggs, feed and rear the nestlings. The appearance of a cuckoo egg in a host nest may change the bacterial community in the nest. This may have consequences on the hatchability of host eggs, even when hosts reject the parasitic egg, typically within six days after parasitism. The present study revealed the bacterial community of cuckoo eggshells and those of the great reed warbler (Acrocephalus arundinaceus), one of the main hosts of cuckoos. We compared host eggs from non-parasitized clutches, as well as host and cuckoo eggs from parasitized clutches. As incubation may change bacterial assemblages on eggshells, we compared these egg types in two stages: the egg-laying stage, when incubation has not been started, and the mid-incubation stage (ca. on days 5-7 in incubation), where heat from the incubating female dries eggshells. Our results obtained by the 16S rRNA gene sequencing technique showed that fresh host and cuckoo eggs had partially different bacterial communities, but they became more similar during incubation in parasitized nests. Cluster analysis revealed that fresh cuckoo eggs and incubated host eggs in unparasitized nests (where no cuckoo effect could have happened) were the most dissimilar from the other groups of eggs. Cuckoo eggs did not reduce the hatchability of great reed warbler eggs. Our results on the cuckoo-great reed warbler relationship supported the idea that brood parasites may change bacterial microbiota in the host nest. Further studies should reveal how bacterial communities of cuckoo eggshells may vary by host-specific races (gentes) of cuckoos.
Subject(s)
Birds/microbiology , Egg Shell/microbiology , Songbirds/microbiology , Songbirds/parasitology , Animals , Biodiversity , Birds/physiology , Female , Host-Parasite Interactions/genetics , Microbiota/genetics , Nesting Behavior , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Songbirds/physiology , Species SpecificityABSTRACT
There are only few studies that explore the ecological consequences of forest management on several organism groups. We studied the short-term effects of four forestry treatments including preparation cutting, clear-cutting, retention tree group and gap-cutting in a temperate managed forest on the assemblage structure of understory plants, enchytraeid worms, spiders and ground beetles. Here we show, that the effect of treatments on the different facets of assemblage structure was taxon-specific. Clear-cutting and retention tree group strongly impoverished enchytraeids assemblages. Even if the species richness and cover of plants increased in clear-cutting and gap-cutting, their species composition moderately changed after treatments. For spiders only their species composition was influenced by the treatments, while the response of ground beetles was slightly affected. Short-term effect of forest management interventions on biodiversity might be compensated by the dispersal (spiders, ground beetles) and resilience (plants) of organism groups, however sedentary soil organism showed high sensitivity.
Subject(s)
Climate , Forestry , Forests , Animals , BiodiversityABSTRACT
Common cuckoos (Cuculus canorus) are best known for their simple two-note calls ("cu-coo"), which are uttered only by males during the breeding season. A previous playback study revealed that territorial males were more tolerant toward playbacks of the calls of familiar, neighbouring individuals than toward unfamiliar, stranger simulated intruders, exhibiting the classical "dear-enemy" phenomenon. Here we experimentally assessed whether the acoustic cues for familiarity recognition are encoded in the first and/or second note of these simple calls. To do so, we played mixed sound files to radio-tagged cuckoos, where the first part of the two-note calls was taken from strangers and the second part from neighbours, or vice versa. As controls, we used behavioural data from two-note neighbour and two-note stranger call playbacks. Cuckoos responded consistently to the two types of mixed sound files. When either the first or second note of the call was taken from a stranger and the other note from a neighbour, they responded to these sound files similarly to two-note playbacks of strangers: they approached the speaker of the playbacks more closely and the calling response-latency to playbacks was longer than to familiar controls. These findings point to the importance of both notes in familiarity recognition. We conclude that familiarity recognition in male common cuckoos needs the complete structure of the two-note cuckoo call, which is characteristic for this species.
Subject(s)
Birds/physiology , Recognition, Psychology/physiology , Vocalization, Animal/physiology , Acoustics , Animals , Sound , TerritorialityABSTRACT
Climate change is altering the phenology of trophically linked organisms, leading to increased asynchrony between species with unknown consequences for ecosystem services. Although phenological mismatches are reported from several ecosystems, experimental evidence for altering multiple ecosystem services is hardly available. We examined how the phenological shift of apple trees affected the abundance and diversity of pollinators, generalist and specialist herbivores and predatory arthropods. We stored potted apple trees in the greenhouse or cold store in early spring before transferring them into orchards to cause mismatches and sampled arthropods on the trees repeatedly. Assemblages of pollinators on the manipulated and control trees differed markedly, but their overall abundance was similar indicating a potential insurance effect of wild bee diversity to ensure fruit set in flower-pollinator mismatch conditions. Specialized herbivores were almost absent from manipulated trees, while less-specialized ones showed diverse responses, confirming the expectation that more specialized interactions are more vulnerable to phenological mismatch. Natural enemies also responded to shifted apple tree phenology and the abundance of their prey. While arthropod abundances either declined or increased, species diversity tended to be lower on apple trees with shifted phenology. Our study indicates novel results on the role of biodiversity and specialization in plant-insect mismatch situations.