Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Exp Eye Res ; : 110101, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303842

ABSTRACT

Endothelial cells (ECs) display organ- and tissue-specific heterogeneity. In the eye, the retinal and choroidal vascular beds are distinct networks with different molecular and morphological properties that serve location-specific functions, i.e., the former maintaining a tight barrier and the latter, a permeable fenestrated vasculature. Given that retinal health critically relies on the function of these vascular beds and that their dysfunction is implicated in a variety of retinal diseases, a molecular understanding of both physiological and pathophysiological characteristics of these distinct vasculatures is critical. Given their interspersed anatomic distribution among parenchymal cells, the study of EC gene expression, in vivo, has been hampered by the challenge of isolating pure populations of ocular ECs in sufficient quantities for large-scale transcriptomics. To address this challenge, we present a methodological and analytical workflow to facilitate inter-tissue comparisons of the in vivo EC translatome isolated from choroid, retina, and brain using the Cre-inducible NuTRAP flox construct and two widely-used endothelial Cre mouse lines: constitutive Tie2-Cre and tamoxifen-inducible Cdh5-CreERT2. For each Cre line, inter-tissue comparison of TRAP-RNAseq enrichment (TRAP-isolated translatome vs input transcriptome) showed tissue-specific gene enrichments with differential pathway representation. For each mouse model, inter-tissue comparison of the EC translatome (choroid vs brain, choroid vs retina, and brain vs retina) showed over 50% overlap of differentially expressed genes (DEGs) between the three paired comparisons, with differential pathway representation for each tissue. Pathway analysis of DEGs in the Cdh5-NuTRAP vs Tie2-NuTRAP comparison for retina, choroid, and brain predicted inhibition of processes related to myeloid cell function and activation, consistent with more specific targeting of ECs in the Cdh5-NuTRAP than in the Tie2-NuTRAP model which also targets hematopoietic progenitors giving rise to immune cells. Indeed, while TRAP enriches for EC transcripts in both models, myeloid transcripts were also captured in the Tie2-NuTRAP model which was confirmed using cell sorting. We suggest experimental/analytical considerations should be taken when selecting Cre-lines to target ECs.

2.
Adv Exp Med Biol ; 1415: 249-256, 2023.
Article in English | MEDLINE | ID: mdl-37440041

ABSTRACT

Caveolin-1 (Cav1), the core structural and scaffolding protein of caveolae membrane domains, is highly expressed in many retinal cells and is associated with ocular diseases. Cav1 regulates innate immune responses and is implicated in neuroinflammatory and neuroprotective signaling in the retina. We have shown that Cav1 expression in Müller glia accounts for over 70% of all retinal Cav1 expression. However, the proteins interacting with Cav1 in Müller glia are not established. Here, we show that immortalized MIO-M1 Müller glia, like endogenous Müller glia, highly express Cav1. Surprisingly, we found that Cav1 in MIO-M1 cells exists as heat-resistant, high molecular weight complexes that are stable after immunoprecipitation (IP). Mass spectrometric analysis of high molecular weight Cav1 complexes after Cav1 IP revealed an interactome network of intermediate filament, desmosomes, and actin-, and microtubule-based cytoskeleton. These results suggest Cav1 domains in Müller glia act as a scaffolding nexus for the cytoskeleton.


Subject(s)
Caveolin 1 , Hot Temperature , Caveolin 1/genetics , Caveolin 1/metabolism , Molecular Weight , Retina/metabolism , Neuroglia/metabolism
3.
Proc Natl Acad Sci U S A ; 117(42): 26494-26502, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33020273

ABSTRACT

During the progression of ocular diseases such as retinopathy of prematurity and diabetic retinopathy, overgrowth of retinal blood vessels results in the formation of pathological neovascular tufts that impair vision. Current therapeutic options for treating these diseases include antiangiogenic strategies that can lead to the undesirable inhibition of normal vascular development. Therefore, strategies that eliminate pathological neovascular tufts while sparing normal blood vessels are needed. In this study we exploited the hyaloid vascular network in murine eyes, which naturally undergoes regression after birth, to gain mechanistic insights that could be therapeutically adapted for driving neovessel regression in ocular diseases. We found that endothelial cells of regressing hyaloid vessels underwent down-regulation of two structurally related E-26 transformation-specific (ETS) transcription factors, ETS-related gene (ERG) and Friend leukemia integration 1 (FLI1), prior to apoptosis. Moreover, the small molecule YK-4-279, which inhibits the transcriptional and biological activity of ETS factors, enhanced hyaloid regression in vivo and drove Human Umbilical Vein Endothelial Cells (HUVEC) tube regression and apoptosis in vitro. Importantly, exposure of HUVECs to sheer stress inhibited YK-4-279-induced apoptosis, indicating that low-flow vessels may be uniquely susceptible to YK-4-279-mediated regression. We tested this hypothesis by administering YK-4-279 to mice in an oxygen-induced retinopathy model that generates disorganized and poorly perfused neovascular tufts that mimic human ocular diseases. YK-4-279 treatment significantly reduced neovascular tufts while sparing healthy retinal vessels, thereby demonstrating the therapeutic potential of this inhibitor.


Subject(s)
Eye/blood supply , Oncogene Proteins/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , Transcriptional Regulator ERG/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Animals, Newborn , Apoptosis/drug effects , Blood Vessels/pathology , Disease Models, Animal , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Indoles/pharmacology , Mice , Oxygen/metabolism , Proto-Oncogene Proteins c-ets/antagonists & inhibitors , Proto-Oncogene Proteins c-ets/metabolism , Retinal Vessels/pathology
4.
Neurobiol Dis ; 175: 105931, 2022 12.
Article in English | MEDLINE | ID: mdl-36423879

ABSTRACT

Analysis of retina cell type-specific epigenetic and transcriptomic signatures is crucial to understanding the pathophysiology of retinal degenerations such as age-related macular degeneration (AMD) and delineating cell autonomous and cell-non-autonomous mechanisms. We have discovered that Aldh1l1 is specifically expressed in the major macroglia of the retina, Müller glia, and, unlike the brain, is not expressed in retinal astrocytes. This allows use of Aldh1l1 cre drivers and Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) constructs for temporally controlled labeling and paired analysis of Müller glia epigenomes and translatomes. As validated through a variety of approaches, the Aldh1l1cre/ERT2-NuTRAP model provides Müller glia specific translatomic and epigenomic profiles without the need to isolate whole cells. Application of this approach to models of acute injury (optic nerve crush) and chronic stress (aging) uncovered few common Müller glia-specific transcriptome changes in inflammatory pathways, and mostly differential signatures for each stimulus. The expression of members of the IL-6 and integrin-linked kinase signaling pathways was enhanced in Müller glia in response to optic nerve crush but not aging. Unique changes in neuroinflammation and fibrosis signaling pathways were observed in response to aging but not with optic nerve crush. The Aldh1l1cre/ERT2-NuTRAP model allows focused molecular analyses of a single, minority cell type within the retina, providing more substantial effect sizes than whole tissue analyses. The NuTRAP model, nucleic acid isolation, and validation approaches presented here can be applied to any retina cell type for which a cell type-specific cre is available.


Subject(s)
Retina , Retinal Degeneration , Humans , Retina/metabolism , Neuroglia/metabolism , Retinal Degeneration/metabolism , Nerve Crush , Optic Nerve
5.
J Lipid Res ; 62: 100145, 2021.
Article in English | MEDLINE | ID: mdl-34710431

ABSTRACT

Despite the association of cholesterol with debilitating pressure-related diseases such as glaucoma, heart disease, and diabetes, its role in mechanotransduction is not well understood. We investigated the relationship between mechanical strain, free membrane cholesterol, actin cytoskeleton, and the stretch-activated transient receptor potential vanilloid isoform 4 (TRPV4) channel in human trabecular meshwork (TM) cells. Physiological levels of cyclic stretch resulted in time-dependent decreases in membrane cholesterol/phosphatidylcholine ratio and upregulation of stress fibers. Depleting free membrane cholesterol with m-ß-cyclodextrin (MßCD) augmented TRPV4 activation by the agonist GSK1016790A, swelling and strain, with the effects reversed by cholesterol supplementation. MßCD increased membrane expression of TRPV4, caveolin-1, and flotillin. TRPV4 did not colocalize or interact with caveolae or lipid rafts, apart from a truncated ∼75 kDa variant partially precipitated by a caveolin-1 antibody. MßCD induced currents in TRPV4-expressing Xenopus laevis oocytes. Thus, membrane cholesterol regulates trabecular transduction of mechanical information, with TRPV4 channels mainly located outside the cholesterol-enriched membrane domains. Moreover, the biomechanical milieu itself shapes the lipid content of TM membranes. Diet, cholesterol metabolism, and mechanical stress might modulate the conventional outflow pathway and intraocular pressure in glaucoma and diabetes in part by modulating TM mechanosensing.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Cytoskeleton/metabolism , TRPV Cation Channels/metabolism , Aged , Animals , Cell Membrane/chemistry , Cells, Cultured , Humans , Male , Mechanotransduction, Cellular , TRPV Cation Channels/genetics , Xenopus laevis
6.
FASEB J ; 34(8): 10762-10777, 2020 08.
Article in English | MEDLINE | ID: mdl-32623782

ABSTRACT

Lysyl oxidase-like-1 (LOXL1), a vital crosslinking enzyme in elastin fiber maintenance, is essential for the stability and strength of elastic vessels and tissues. Variants in the LOXL1 locus associate with a dramatic increase in risk of exfoliation syndrome (XFS), a systemic fibrillopathy, which often presents with ocular hypertension and exfoliation glaucoma (XFG). We examined the role of LOXL1 in conventional outflow function, the prime regulator of intraocular pressure (IOP). Using Loxl1-/- , Loxl1+/- , and Loxl1+/+ mice, we observed an inverse relationship between LOXL1 expression and IOP, which worsened with age. Elevated IOP in Loxl1-/- mice was associated with a larger globe, decreased ocular compliance, increased outflow facility, extracellular matrix (ECM) abnormalities, and dilated intrascleral veins, yet, no dilation of arteries or capillaries. Interestingly, in living Loxl1-/- mouse eyes, Schlemm's canal (SC) was less susceptible to collapse when challenged with acute elevations in IOP, suggesting elevated episcleral venous pressure (EVP). Thus, LOXL1 expression is required for normal IOP control, while ablation results in altered ECM repair/homeostasis and conventional outflow physiology. Dilation of SC and distal veins, but not arteries, is consistent with key structural and functional roles for elastin in low-pressure vessels subjected to cyclical mechanical stress.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Animals , Exfoliation Syndrome/metabolism , Extracellular Matrix/metabolism , Glaucoma/metabolism , Homeostasis/physiology , Intraocular Pressure/physiology , Mice , Mice, Inbred C57BL , Ocular Hypertension/metabolism
7.
Adv Exp Med Biol ; 1185: 169-173, 2019.
Article in English | MEDLINE | ID: mdl-31884607

ABSTRACT

Although the retina resides within the immune-protected ocular environment, inflammatory processes mounted in the eye can lead to retinal damage. Unchecked chronic ocular inflammation leads to retinal damage. Thus, retinal degenerative diseases that result in chronic inflammation accelerate retinal tissue destruction and vision loss. Treatments for chronic retinal inflammation involve corticosteroid administration, which has been associated with glaucoma and cataract formation. Therefore, we must consider novel, alternative treatments. Here, we provide a brief review of our current understanding of chronic innate inflammatory processes in retinal degeneration and the complex role of a putative inflammatory regulator, Caveolin-1 (Cav1). Furthermore, we suggest that the complex role of Cav1 in retinal inflammatory modulation is likely dictated by cell type-specific subcellular localization.


Subject(s)
Caveolin 1/metabolism , Inflammation/pathology , Retina/pathology , Humans , Retinal Degeneration/pathology
8.
Exp Eye Res ; 171: 164-173, 2018 06.
Article in English | MEDLINE | ID: mdl-29526795

ABSTRACT

Cultured trabecular meshwork (TM) cells are a valuable model system to study the cellular mechanisms involved in the regulation of conventional outflow resistance and thus intraocular pressure; and their dysfunction resulting in ocular hypertension. In this review, we describe the standard procedures used for the isolation of TM cells from several animal species including humans, and the methods used to validate their identity. Having a set of standard practices for TM cells will increase the scientific rigor when used as a model, and enable other researchers to replicate and build upon previous findings.


Subject(s)
Cell Culture Techniques , Cell Separation/methods , Guidelines as Topic , Trabecular Meshwork/cytology , Age Factors , Animals , Biomarkers/metabolism , Consensus , Fetus , Humans , Tissue Donors , Tissue Preservation , Tissue and Organ Harvesting , Trabecular Meshwork/metabolism
9.
Adv Exp Med Biol ; 1074: 593-601, 2018.
Article in English | MEDLINE | ID: mdl-29721992

ABSTRACT

Protocols for photoreceptor outer segment (POS) isolation that can be used in phagocytosis assays of retinal pigment epithelium (RPE) cells have routinely used a large number of cow or pig eyes. However, when working with large animal models (e.g., dog, cats, transgenic pigs) of inherited retinal degenerative diseases, access to retinal tissues may be limited. An optimized protocol is presented in this paper to isolate sufficient POS from a single canine retina for use in RPE phagocytosis assays.


Subject(s)
Cell Fractionation/methods , Phagocytosis , Primary Cell Culture/methods , Retina/cytology , Retinal Pigment Epithelium/metabolism , Animals , Cells, Cultured , Dogs , Fluorescent Antibody Technique, Direct , Fluorescent Dyes , Rhodopsin/analysis , Rhodopsin/immunology , Rod Cell Outer Segment , Staining and Labeling/methods , Zonula Occludens-1 Protein/analysis , Zonula Occludens-1 Protein/immunology
10.
J Biol Chem ; 291(12): 6494-506, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26814131

ABSTRACT

Caveolin-1 associates with the endo/lysosomal machinery of cells in culture, suggesting that it functions at these organelles independently of its contribution to cell surface caveolae. Here we explored mice lacking caveolin-1 specifically in the retinal pigment epithelium (RPE). The RPE supports neighboring photoreceptors via diurnal phagocytosis of spent photoreceptor outer segment fragments. Like mice lacking caveolin-1 globally, (RPE)CAV1(-/-) mice developed a normal RPE and neural retina but showed reduced rod photoreceptor light responses, indicating that lack of caveolin-1 affects photoreceptor function in a non-cell-autonomous manner. (RPE)CAV1(-/-) RPE in situ showed normal particle engulfment but delayed phagosome clearance and reversed diurnal profiles of levels and activities of lysosomal enzymes. Therefore, eliminating caveolin-1 specifically impairs phagolysosomal degradation by the RPE in vivo. Endogenous caveolin-1 was recruited to maturing phagolysosomes in RPE cells in culture. Consistent with these in vivo data, a moderate increase (to ∼ 2.5-fold) or decrease (by half) of caveolin-1 protein levels in RPE cells in culture was sufficient to accelerate or impair phagolysosomal digestion, respectively. A mutant form of caveolin-1 that fails to reach the cell surface augmented degradation like wild-type caveolin-1. Acidic lysosomal pH and increased protease activity are essential for digestion. We show that halving caveolin-1 protein levels significantly alkalinized lysosomal pH and decreased lysosomal enzyme activities. Taken together, our results reveal a novel role for intracellular caveolin-1 in modulating phagolysosomal function. Moreover, they show, for the first time, that organellar caveolin-1 significantly affects tissue functionality in vivo.


Subject(s)
Caveolin 1/metabolism , Retinal Pigment Epithelium/metabolism , Animals , Cathepsin D/metabolism , Cell Line , Circadian Rhythm , Lysosomes/enzymology , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis , Phagosomes/metabolism , Protein Transport , Proteolysis , Rats , Receptors, Transferrin/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Sus scrofa , Vision, Ocular
11.
J Biol Chem ; 291(16): 8721-34, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26893377

ABSTRACT

Cone photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in cone phototransduction, which is a process essential for daylight vision, color vision, and visual acuity. Mutations in the cone channel subunits CNGA3 and CNGB3 are associated with human cone diseases, including achromatopsia, cone dystrophies, and early onset macular degeneration. Mutations in CNGB3 alone account for 50% of reported cases of achromatopsia. This work investigated the role of CNGB3 in cone light response and cone channel structural stability. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we used Cngb3(-/-)/Nrl(-/-) mice with CNGB3 deficiency on a cone-dominant background in our study. We found that, in the absence of CNGB3, CNGA3 was able to travel to the outer segments, co-localize with cone opsin, and form tetrameric complexes. Electroretinogram analyses revealed reduced cone light response amplitude/sensitivity and slower response recovery in Cngb3(-/-)/Nrl(-/-) mice compared with Nrl(-/-) mice. Absence of CNGB3 expression altered the adaptation capacity of cones and severely compromised function in bright light. Biochemical analysis demonstrated that CNGA3 channels lacking CNGB3 were more resilient to proteolysis than CNGA3/CNGB3 channels, suggesting a hindered structural flexibility. Thus, CNGB3 regulates cone light response kinetics and the channel structural flexibility. This work advances our understanding of the biochemical and functional role of CNGB3 in cone photoreceptors.


Subject(s)
Cyclic Nucleotide-Gated Cation Channels/metabolism , Light , Retinal Cone Photoreceptor Cells/metabolism , Animals , Cyclic Nucleotide-Gated Cation Channels/genetics , Humans , Mice , Mice, Knockout , Opsins/genetics , Opsins/metabolism , Retinal Cone Photoreceptor Cells/cytology
12.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L760-L771, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28188225

ABSTRACT

Endothelial cell (EC) activation and vascular injury are hallmark features of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Caveolin-1 (Cav-1) is highly expressed in pulmonary microvascular ECs and plays a key role in maintaining vascular homeostasis. The aim of this study was to determine if the lung inflammatory response to Escherichia coli lipopolysaccharide (LPS) promotes priming of ECs via Cav-1 depletion and if this contributes to the onset of pulmonary vascular remodeling. To test the hypothesis that depletion of Cav-1 primes ECs to respond to profibrotic signals, C57BL6 wild-type (WT) mice (Tie2.Cre-;Cav1fl/fl ) were exposed to nebulized LPS (10 mg; 1 h daily for 4 days) and compared with EC-specific Cav1-/- (Tie2.Cre+;Cav1fl/fl ). After 96 h of LPS exposure, total lung Cav-1 and bone morphogenetic protein receptor type II (BMPRII) expression were reduced in WT mice. Moreover, plasma albumin leakage, infiltration of immune cells, and levels of IL-6/IL-6R and transforming growth factor-ß (TGF-ß) were elevated in both LPS-treated WT and EC-Cav1-/- mice. Finally, EC-Cav1-/- mice exhibited a modest increase in microvascular thickness basally and even more so on exposure to LPS (96 h). EC-Cav1-/- mice and LPS-treated WT mice exhibited reduced BMPRII expression and endothelial nitric oxide synthase uncoupling, which along with increased TGF-ß promoted TGFßRI-dependent SMAD-2/3 phosphorylation. Finally, human lung sections from patients with ARDS displayed reduced EC Cav-1 expression, elevated TGF-ß levels, and severe pulmonary vascular remodeling. Thus EC Cav-1 depletion, oxidative stress-mediated reduction in BMPRII expression, and enhanced TGF-ß-driven SMAD-2/3 signaling promote pulmonary vascular remodeling in inflamed lungs.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/metabolism , Caveolin 1/metabolism , Endothelial Cells/pathology , Inflammation/pathology , Lung/blood supply , Lung/metabolism , Transforming Growth Factor beta/metabolism , Vascular Remodeling , Actins/metabolism , Acute Lung Injury/complications , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Adult , Aged , Animals , Bronchoalveolar Lavage Fluid , Cell Shape/drug effects , Cytokines/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Humans , Inflammation/metabolism , Inflammation Mediators/metabolism , Interleukin-6/pharmacology , Lipopolysaccharides , Lung/immunology , Lung/pathology , Male , Mice, Inbred C57BL , Middle Aged , Models, Biological , Nitric Oxide Synthase Type III/metabolism , Proteolysis/drug effects , Pulmonary Artery/pathology , Receptors, Transforming Growth Factor beta/metabolism , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , Time Factors , Vascular Remodeling/drug effects
13.
J Neurochem ; 143(5): 595-608, 2017 12.
Article in English | MEDLINE | ID: mdl-28902411

ABSTRACT

Diabetic retinopathy is a neurovascular diabetes complication resulting in vision loss. A wealth of literature reports retinal molecular changes indicative of neural deficits, inflammation, and vascular leakage with chronic diabetes, but the mechanistic causes of disease initiation and progression are unknown. Microvascular mitochondrial DNA (mtDNA) damage leading to mitochondrial dysfunction has been proposed to drive vascular dysfunction in retinopathy. However, growing evidence suggests that neural retina dysfunction precedes and may cause vascular damage. Therefore, we tested the hypothesis that neural mtDNA damage and mitochondrial dysfunction are an early initiating factor of neural diabetic retinopathy development in a rat streptozotocin-induced, Type I diabetes model. Mitochondrial function (oxygen consumption rates) was quantified in retinal synaptic terminals from diabetic and non-diabetic rats with paired retinal structural and function assessment (optical coherence tomography and electroretinography, respectively). Mitochondrial genome damage was assessed by identifying mutations and deletions across the mtDNA genome by high depth sequencing and absolute mtDNA copy number counting through digital PCR. Mitochondrial protein expression was assessed by targeted mass spectrometry. Retinal functional deficits and neural anatomical changes were present after 3 months of diabetes and prevented/normalized by insulin treatment. No marked dysfunction of mitochondrial activity, maladaptive changes in mitochondrial protein expression, alterations in mtDNA copy number, or increase in mtDNA damage was observed in conjunction with retinal functional and anatomical changes. These results demonstrate that neural retinal dysfunction with diabetes begins prior to mtDNA damage and dysfunction, and therefore retinal neurodegeneration initiation with diabetes occurs through other, non-mitochondrial DNA damage, mechanisms.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Retina/metabolism , Animals , DNA Damage/genetics , DNA, Mitochondrial/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Genome, Mitochondrial , Rats
14.
Mol Vis ; 23: 707-717, 2017.
Article in English | MEDLINE | ID: mdl-29062222

ABSTRACT

PURPOSE: Sex and age are critical factors in a variety of retinal diseases but have garnered little attention in preclinical models. The current lack of knowledge impairs informed decision making regarding inclusion and design of studies that incorporate both sexes and/or the effects of aging. The goal of this study was to examine normative mouse retina gene expression in both sexes and with advancing age. METHODS: Retinal gene expression in female and male C57BL/6JN mice at 3 months and 24 months of age were compared for sex differences and aging responses through whole transcriptome microarray analysis. Sex differences and age-related changes were examined in the context of cellular pathways and processes, regulatory patterns, and cellular origin, as well as for overlap with described changes in retinal disease models. Selected age and sex differences were confirmed with quantitative PCR. RESULTS: Age-related gene expression changes demonstrated commonalities and sexually divergent responses. Several cellular pathways and processes, especially inflammation-related, are affected and were over-represented in fibroblast, microglial, and ganglion cell-specific genes. Lifelong, and age-dependent, sex differences were observed and were over-represented in fibroblast-specific genes. Age and sex differences were also observed to be regulated in models of diabetic retinopathy, glaucoma, and other diseases. CONCLUSIONS: These findings demonstrate that most age-related changes in retinal gene expression are sexually divergent and that there are significant sex differences in gene expression throughout the lifespan. These data serve as a resource for vision researchers seeking to include sex and age as factors in their preclinical studies.


Subject(s)
Aging/genetics , Gene Expression Profiling , Gene Expression Regulation/physiology , Retina/metabolism , Sexual Behavior, Animal/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Sex Characteristics
15.
Diabetologia ; 59(9): 2026-35, 2016 09.
Article in English | MEDLINE | ID: mdl-27306616

ABSTRACT

AIMS/HYPOTHESIS: We aimed to determine whether plasma lipoproteins, after leakage into the retina and modification by glycation and oxidation, contribute to the development of diabetic retinopathy in a mouse model of type 1 diabetes. METHODS: To simulate permeation of plasma lipoproteins into retinal tissues, streptozotocin-induced mouse models of diabetes and non-diabetic mice were challenged with intravitreal injection of human 'highly-oxidised glycated' low-density lipoprotein (HOG-LDL), native- (N-) LDL, or the vehicle PBS. Retinal histology, electroretinography (ERG) and biochemical markers were assessed over the subsequent 14 days. RESULTS: Intravitreal administration of N-LDL and PBS had no effect on retinal structure or function in either diabetic or non-diabetic animals. In non-diabetic mice, HOG-LDL elicited a transient inflammatory response without altering retinal function, but in diabetic mice it caused severe, progressive retinal injury, with abnormal morphology, ERG changes, vascular leakage, vascular endothelial growth factor overexpression, gliosis, endoplasmic reticulum stress, and propensity to apoptosis. CONCLUSIONS/INTERPRETATION: Diabetes confers susceptibility to retinal injury imposed by intravitreal injection of modified LDL. The data add to the existing evidence that extravasated, modified plasma lipoproteins contribute to the propagation of diabetic retinopathy. Intravitreal delivery of HOG-LDL simulates a stress known to be present, in addition to hyperglycaemia, in human diabetic retinopathy once blood-retinal barriers are compromised.


Subject(s)
Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/complications , Diabetic Retinopathy/blood , Diabetic Retinopathy/etiology , Animals , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/pathology , Diabetic Retinopathy/pathology , Disease Models, Animal , Electroretinography , Humans , Lipoproteins, LDL/blood , Male , Mice , Mice, Inbred C57BL
16.
Adv Exp Med Biol ; 854: 411-8, 2016.
Article in English | MEDLINE | ID: mdl-26427439

ABSTRACT

Caveolin-1 (Cav-1), the scaffolding protein of caveolae, is expressed in several retinal cell types and is associated with ocular pathologies. Cav-1 modulates neuroinflammatory/neuroprotective responses to central nervous system injury. We have shown that loss of Cav-1 results in a blunted cytokine response in retinas challenged with inflammatory stimuli. As neuroinflammatory and neuroprotective signaling overlap in their cytokine production and downstream signaling pathways, we hypothesized that loss of Cav-1 may also suppress neuroprotective signaling in the retina. To test this, we subjected mice in which Cav-1 was deleted specifically in the retina to a neurodegenerative insult induced by sodium iodate (NaIO3) and measured STAT3 activation, a measure of neuroprotective signaling. Our results show that Cav-1 ablation blunts STAT3 activation induced by NaIO3. STAT3 activation in response to intravitreal administration of the IL-6 family cytokine, leukemia inhibitory factor (LIF), was not affected by Cav-1 deletion indicating a competent gp130 receptor response. Thus, Cav-1 modulates neuroprotective signaling by regulating the endogenous production of neuroprotective factors.


Subject(s)
Caveolin 1/genetics , Neuroprotection/genetics , Retina/metabolism , Signal Transduction/genetics , Animals , Blotting, Western , Caveolin 1/deficiency , Female , Immunohistochemistry , Injections, Intraperitoneal , Iodates/administration & dosage , Iodates/pharmacology , Leukemia Inhibitory Factor/administration & dosage , Leukemia Inhibitory Factor/pharmacology , Male , Mice , Mice, Knockout , Neuroprotection/drug effects , Retina/drug effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
17.
Am J Pathol ; 184(2): 541-55, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24326256

ABSTRACT

Blood-retinal barrier (BRB) breakdown and related vascular changes are implicated in several ocular diseases. The molecules and mechanisms regulating BRB integrity and pathophysiology are not fully elucidated. Caveolin-1 (Cav-1) ablation results in loss of caveolae and microvascular pathologies, but the role of Cav-1 in the retina is largely unknown. We examined BRB integrity and vasculature in Cav-1 knockout mice and found a significant increase in BRB permeability, compared with wild-type controls, with branch veins being frequent sites of breakdown. Vascular hyperpermeability occurred without apparent alteration in junctional proteins. Such hyperpermeability was not rescued by inhibiting eNOS activity. Veins of Cav-1 knockout retinas exhibited additional pathological features, including i) eNOS-independent enlargement, ii) altered expression of mural cell markers (eg, down-regulation of NG2 and up-regulation of αSMA), and iii) dramatic alterations in mural cell phenotype near the optic nerve head. We observed a significant NO-dependent increase in retinal artery diameter in Cav-1 knockout mice, suggesting that Cav-1 plays a role in autoregulation of resistance vessels in the retina. These findings implicate Cav-1 in maintaining BRB integrity in retinal vasculature and suggest a previously undefined role in the retinal venous system and associated mural cells. Our results are relevant to clinically significant retinal disorders with vascular pathologies, including diabetic retinopathy, uveoretinitis, and primary open-angle glaucoma.


Subject(s)
Blood-Retinal Barrier/metabolism , Blood-Retinal Barrier/pathology , Caveolin 1/deficiency , Retinal Vein/metabolism , Retinal Vein/pathology , Animals , Biomarkers/metabolism , Blood-Retinal Barrier/enzymology , Blood-Retinal Barrier/ultrastructure , Caveolin 1/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type III/metabolism , Permeability , Phenotype , Protein Transport , Retinal Vein/enzymology , Retinal Vein/ultrastructure , Tight Junction Proteins/metabolism
18.
Am J Pathol ; 184(10): 2709-20, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25108226

ABSTRACT

Pericyte degeneration is an early event in diabetic retinopathy and plays an important role in progression of diabetic retinopathy. Clinical studies have shown that fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, has robust therapeutic effects on diabetic retinopathy in type 2 diabetic patients. We evaluated the protective effect of PPARα against pericyte loss in diabetic retinopathy. In streptozotocin-induced diabetic mice, fenofibrate treatment significantly ameliorated retinal acellular capillary formation and pericyte loss. In contrast, PPARα(-/-) mice with diabetes developed more severe retinal acellular capillary formation and pericyte dropout, compared with diabetic wild-type mice. Furthermore, PPARα knockout abolished the protective effect of fenofibrate against diabetes-induced retinal pericyte loss. In cultured primary human retinal capillary pericytes, activation and expression of PPARα both significantly reduced oxidative stress-induced apoptosis, decreased reactive oxygen species production, and down-regulated NAD(P)H oxidase 4 expression through blockade of NF-κB activation. Furthermore, activation and expression of PPARα both attenuated the oxidant-induced suppression of mitochondrial O2 consumption in human retinal capillary pericytes. Primary retinal pericytes from PPARα(-/-) mice displayed more apoptosis, compared with those from wild-type mice under the same oxidative stress. These findings identified a protective effect of PPARα on retinal pericytes, a novel function of endogenous PPARα in the retina.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetic Retinopathy/drug therapy , Fenofibrate/pharmacology , PPAR alpha/agonists , Pericytes/drug effects , Animals , Apoptosis/drug effects , Capillaries/drug effects , Capillaries/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/metabolism , Diabetic Retinopathy/chemically induced , Diabetic Retinopathy/metabolism , Disease Models, Animal , Gene Expression Regulation , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidases/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , PPAR alpha/metabolism , Pericytes/metabolism , Reactive Oxygen Species/metabolism , Retina/drug effects , Retina/metabolism
19.
Adv Exp Med Biol ; 801: 15-21, 2014.
Article in English | MEDLINE | ID: mdl-24664676

ABSTRACT

Caveolin-1 (Cav-1), the signature protein of caveolae is expressed in several cell types in the adult retina and is linked to ocular pathologies including uveitis, diabetic retinopathy, and primary open angle glaucoma. Genetic ablation of Cav-1 causes retinal functional deficits due to disruptions in environmental homeostasis. To better understand Cav-1 function in the retina, we examined its expression/localization during postnatal retinal development. From P0-P5, Cav-1 was detected only in the developing superficial retinal vessels, in hyaloid and choroidal vasculature, and in the retinal pigment epithelium (RPE). At P7, staining began to be observed centrally in radial cells in the neuroretina, and this staining increased dramatically by P9/10 in identifiable Müller glia. Prominent vascular staining continued throughout development. These results support the idea that Cav-1 is an indicator of Müller glial differentiation and suggests that it plays an important role in Müller cell function.


Subject(s)
Caveolae/metabolism , Caveolin 1/metabolism , Ependymoglial Cells/metabolism , Retina/growth & development , Retina/metabolism , Animals , Cell Differentiation/physiology , Male , Mice , Mice, Inbred C57BL , Retina/cytology , Retinal Vessels/metabolism
20.
Neurobiol Aging ; 140: 41-59, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723422

ABSTRACT

Aging is the main risk factor for age-related macular degeneration (AMD), a retinal neurodegenerative disease that leads to irreversible blindness, particularly in people over 60 years old. Retinal pigmented epithelium (RPE) atrophy is an AMD hallmark. Genome-wide chromatin accessibility, DNA methylation, and gene expression studies of AMD and control RPE demonstrate epigenomic/transcriptomic changes occur during AMD onset and progression. However, mechanisms by which molecular alterations of normal aging impair RPE function and contribute to AMD pathogenesis are unclear. Here, we specifically interrogate the RPE translatome with advanced age and across sexes in a novel RPE reporter mouse model. We find differential age- and sex- associated transcript expression with overrepresentation of pathways related to inflammation in the RPE. Concordant with impaired RPE function, the phenotypic changes in the aged translatome suggest that aged RPE becomes immunologically active, in both males and females, with some sex-specific signatures, which supports the need for sex representation for in vivo studies.


Subject(s)
Aging , Macular Degeneration , Retinal Pigment Epithelium , Sex Characteristics , Animals , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Female , Male , Aging/genetics , Aging/physiology , Aging/pathology , Macular Degeneration/genetics , Macular Degeneration/pathology , Macular Degeneration/etiology , Transcriptome , Disease Models, Animal , Gene Expression , Inflammation , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL